Box-total dual integrality of the perfect matching polytope

Roland Grappe¹, Mathieu Lacroix², Francesco Pisanu², Roberto Wolfler Calvo²

¹ LAMSADE, Université Paris Dauphine
 roland.grappe@dauphine.psl.eu
² LIPN, Université Sorbonne Paris Nord
 {lacroix,pisanu,wolfler}@lipn.fr

Mots-clés : matching covered graph, perfect matching polytope, box-totally dual integral polyhedron

1 Introduction

The perfect matching polytope is the convex hull of the characteristic vectors of all perfect matchings of a graph. A graph is matching covered if each of its edges belongs to a perfect matching. These graphs have been introduced by Edmonds, Pulleyblank, and Lovász in [6]. A matching covered graph \(G \) is solid if it has no separating cuts, where a cut \(\delta(X) \) is separating if \(G/X \) and \(G/(V \setminus X) \) are also matching covered.

A rational linear system is totally dual integral (TDI) if for every integer linear function for which the optimum is finite the associated dual problem has an integer optimal solution. A TDI system is box-TDI if adding any rational bounds on the variables preserves its TDI ness. Box-TDI systems are systems that yield strong min-max relations such as the one involved in the Max Flow-Min Cut Theorem of Ford and Fulkerson. A polyhedron is box-TDI if it can be described by a box-TDI system. In brief, TDI systems provide sufficient conditions for the integrality of a polyhedron, while box-TDIness guarantees it even when adding box constraints, which can be viewed as introducing constrained capacity.

Box-totally dual integral systems and polyhedra received a lot of attention from the combinatorial optimization community around the 80's. A renewed interest appeared in the last decade and since then many deep results appeared involving such systems (see for example [2], [4], and [7]).

Ding et al. [5] characterized the box-TDIness of the matching polytope. Though the perfect matching polytope is a face of the latter, their result does not characterize the box-TDIness of the perfect matching polytope.

2 Contributions

We extend the work of de Carvalho et al. [3], by characterizing the perfect matching polytope of solid matching covered graphs.

Theorem 1. The perfect matching polytope of a solid matching covered graph is the intersection of its affine hull with the nonnegative orthant.

Then, combining a characterization of box-TDI polyhedra of Chervet et al. [2] with a result on incidence matrices of graphs [1], we prove the following.

Corollary 2. The perfect matching polytope of a matching covered graph is box-TDI if and only if its affine hull is also box-TDI.
Références

