
Formal-simplex algorithm in linear programming

Hédi Nabli
Laboratory of Probability and Statistics - University of Sfax, Tunisia

hedi.nabli@fss.usf.tn; Hedi.Nabli@fsm.rnu.tn

Keywords : Simplex algorithm, dual-simplex algorithm, pivot rules.

1 Introduction
The simplex algorithm pivots from basic feasible solution (BFS) to another BFS attempting to
reach a vertex whose reduced cost vector is non-positive. This process is achieved by improving
the objective value in each step, avoiding in consequence to browse all BFS-s whose number is
in general extremely large. In linear programming, it is sometimes easy to initialize the simplex
algorithm by a basic solution that looks optimal (the related reduced cost is non-positive) but
which is not feasible. In this case, the dual-simplex algorithm is applicable. This algorithm
works towards feasibility while maintaining the optimality condition. In this paper, we propose
another alternative, different of dual-simplex algorithm, that we agree to call formal-simplex
algorithm. Thanks to the notion of formal tableau, developed in [3], we prove that the dual-
simplex algorithm is actually the simplex algorithm with Dantzig’s pivot rule ran on the formal
tableau. Since there are many new pivot rules developed in the literature that are more efficient
than Dantzig one’s, our approach consists in applying simplex algorithm with an appropriate
pivot rule on the formal tableau. To get the primal optimal solution, we apply the formal
tableau on the last iteration. This action is justified since the formal tableau of the formal
tableau is precisely the primal simplex tableau.

2 Formal-simplex algorithm

2.1 Formal tableau
Let us consider a linear program (LP) written in standard form:

max (or min) [Z(y) = c∗y]
My = b
y ≥ 0Rn ,

where c ∈ Rn, b ∈ Rm and M ∈ Mm,n(R); with m < n and rank(M) = m. The symbol ∗

stands for the transpose operator. After possible rearranging the columns of M , let [B N ] = M
where B is a m×m invertible matrix; called basic matrix; and N a m× (n−m) matrix. The
simplex tableau in condensed form related to the basis B is as follows:

yj1 . . . yjp

yi1

B−1N B−1b
...
yim

w∗
N = ±[c∗

N − c∗
BB

−1N ] ∓Z

where Z = Z
(B−1b

0N

)
= c∗

BB
−1b and p = n−m.

The row vector w∗
N = ±[c∗

N − c∗
BB

−1N ] is called the reduced cost vector associated to B. the
± symbol depends on the nature of the problem: it is + if the studied (LP) is of type “max”



and it is − for type “min”. If B−1b > 0Rm , the basis B is called feasible and the solution(
B−1b
0Rp

)
is called the BFS associated to B. In this case, the condition w∗

N 6 0∗
N ensures the

optimality of this BFS, otherwise a positive entry ws of w∗
N is selected and the corresponding

nonbasic variable yjs is permuted with the basic variable yir where r = argmin{ (B−1b)i

(B−1Ns)i
|

(B−1Ns)i > 0}. In that way, the new basis remains feasible and the objective value is enhanced:
Z ← Z± (B−1b)r

(B−1Ns)r
ws. This process describes a simplex iteration and in case of multiple positive

entries in w∗
N , the choice of ws is not unique. The way, fixing which positive coefficient ws must

be selected, is called pivoting rule. The most known is the Dantzig’s pivot rule, by reference
to George Dantzig, it chooses systematically the most positive reduced cost [1].

In [3], Nabli introduced the notion of formal tableau. For each simplex tableau, a new
tableau which is actually a simplex tableau for the dual problem, is defined. It is called formal
tableau and it is obtained through the following correspondence:

yi1 . . . yip

yip+1

β = B−1N B−1b
...
yin

w∗
N ∓Z

Formal tableau
−−−−−−−−−→

yjp+1 . . . yjn

yj1

−β∗ −wN

...
yjp

−(B−1b)∗ ±Z

The basic variables yip+1 , . . . , yin are transformed into nonbasic but with an indexation defined
by the following congruence relation:

jl ≡ il +m [n] (1)

For the nonbasic variables yi1 , . . . , yip , they must be transposed to basic variables in the formal
tableau with the same indexation rule (1).

Theorem 2.1 The dual-simplex algorithm is exactly the simplex algorithm applied on the for-
mal tableau with Dantzig’s pivot rule.

Proof. The right hand side B−1b in the primal tableau is transformed to the reduced cost
vector with opposite sign in the formal tableau. As the dual-simplex algorithm starts by seeking
the most negative entry in B−1b, that corresponds, up to a sign, to the most positive reduced
cost in the formal tableau. So, the exiting variable of the dual-simplex algorithm is exactly the
entering variable in the formal tableau using the Dantzig’s pivot rule. On the other hand, the
entering variable for the dual-simplex algorithm is actually the exiting variable for the formal
tableau since a

b = −a
−b for all reals a and b ̸= 0. �

By analogy to the duality in linear programming, the notion of the formal tableau satisfies
a fundamental property stated in the following theorem.

Theorem 2.2
The formal tableau of the formal tableau is the primal tableau.

Proof. The formal tableau has p basic variables and then the indexation of the formal tableau
of the formal tableau is:

kl ≡ jl + p ≡ il + p+m mod(n)
Since p + m = n, we obtain kl = il. On the other hand, it is clear that for any matrix A, we
have −(−(A)∗)∗ = A. �

2.2 Algorithm description
The formal-simplex algorithm consists in running the simplex algorithm with an appropriate
pivot rule on the formal tableau and in considering at the end the formal tableau of the last
tableau to get the primal solution. The word "appropriate" can be defined by the user according
to the considered LP. Our approach can be recapitulated in the algorithm below.

The consequences of the formal-tableau concept are multiple:



Algorithm 1 Formal-Simplex Algorithm
Require: A dual feasible basis B
Ensure: Resolution of the primal

Construct the formal tableau related to B
Run the simplex algorithm with an appropriate pivot rule on this formal tableau
if Optimal solution then

Consider the formal tableau of the last tableau to get the primal optimal solution
end if
if Unbounded solution then

The primal is unfeasible
end if

1. No need to implement two codes: one for the simplex and another for the dual-simplex.

2. No need to develop new pivoting rules for the dual-simplex algorithm.

3. For each considered (LP), we have two choices: either apply the simplex algorithm on
the primal tableau or apply it on the formal tableau and consider at the end the formal
tableau. Even if the initial basis is neither feasible nor dual-feasible, the nonfeasible basis
method, developed in [3, 4], is an alternative for such a situation [5].

Many examples are performed in the next section, the results show the advantage of our
approach in number of iterations and computational time compared with the dual-simplex
algorithm.

3 Results of Comparison
In order to show the advantages of our approach, we compare it with the dual-simplex algo-
rithm. For this purpose, we consider many examples all of the following type:

min[ψ(v) = c∗v]
Av > b
v > 0Rp ,

where A is m × p matrix with Gaussian entries, c and b are Poissonian vectors of parameter
µ = 1 and µ× p respectively. The number of iterations required by the dual-simplex (DS) and
Formal-simplex (FSSE) algorithms are reported in Table 1. Since the entries of the considered
linear programs are random, each algorithm is ran 10 times on each couple (m, p) and Table 1
displays the mean value of iteration numbers.

(m, p) (50, 75) (100, 150) (150, 225) (200, 300) (300, 450) (400, 600)
∑

DS 113 416 787 1365 3151 5849 11681
FSSE 71 191 276 428 727 1334 3027

TAB. 1: Number of iterations for different values of (m, p)

In this paper, we adopt the steepest-edge pivot rule developed in [2]. The gain of our
approach (FSSE), compared with the dual-simplex algorithm (DS), is substantial: 285%
(11681/3027 ≃ 3.859). We also observe that the larger (m, p) is, the higher the gain.

Table 2 gives the CPU time in second for different examples when the latter are performed
on a same machine through the software Matlab 2015. As predicted, These results show that
the formal-simplex algorithm (FSSE) is better than the dual-simplex algorithm (DS). Precisely,
(FSSE) is overall 3.6 more speedy than (DS) since we have 174.89/48.38 ≃ 3.615. The gain in



(m, p) (50, 75) (100, 150) (150, 225) (200, 300) (300, 450) (400, 600)
∑

DS 0.08 0.47 2.15 5.65 35.68 130.86 174.89
FSSE 0.02 0.13 0.48 1.55 9.96 36.24 48.38

TAB. 2: CPU time in second for different values of (m, p)

CPU time is slightly smaller than the gain in number of iterations. This is due to the additional
cost required by the steepest-edge rule in the entering variable selection.

Examples

1 2 3 4 5 6

ie
ra

ti
o
n
s
 ×

 c
p
u
ti
m

e

100

101

102

103

104

105

106

DS

FSSE

FIG. 1: Evolution of the product "iterations × cputime"

Figure 1 shows the behaviour of the product between the involved number of iterations
and the cpu-time according to the different values (m, p), that are indexed from 1 to 6. We
observe that the gap between the two curves (DS) and (FSSE) enlarges when (m, p) grows.
This confirms our statement "the larger (m, p) is, the higher the gain".

References
[1] George B. Dantzig. Maximization of a linear function of variables subject to linear inequal-

ities. In: T.C. Koopmans (Ed.), Activity Analysis of Production and Allocation, John
Wiley, 339-–347, 1951.

[2] Donald Goldfarb, John K Ried. A practical steepest-edge simplex algorithm. Mathematical
Programming, 12:361-–371, 1977.

[3] Hédi Nabli. An overview on the simplex algorithm. Applied Mathematics and Computation,
210:479–489, 2009.

[4] Hédi Nabli, Sonia Chahdoura. Algebraic simplex initialization combined with the nonfea-
sible basis method. European Journal of Operational Research, 245:384–391, 2015.

[5] Kasitinart Sangngern and Aua-aree Boonperm. A new initial basis for the simplex method
combined with the nonfeasible basis method. Journal of Physics: Conference Series,1593,
2020


