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1 Introduction 

The idea of quantum computing was first launched in 1980, when Benioff defines a quantum 

mechanical model of a Turing machine. A few years later, Feynman (1982) introduces the idea of a 

universal quantum simulator. Building on the work of Benioff and Feynman, Deutsch (1985) describes 

the first universal quantum computer that is able to efficiently simulate any other quantum computer. In 

addition, Deutsch also develops the Deutsch algorithm, the first quantum algorithm that has a proven 

speedup when compared to a classical algorithm. Later, Deutsch and Josza (1992) extend this algorithm. 

Deutsch and Josza, however, consider a problem (the Deutsch-Josza problem) that has no practical use, 

and it takes until 1994 for quantum computing to really take off. In 1994, Shor presents a quantum 

algorithm to find the prime factors of large integers in polynomial time (whereas the best classical 

algorithm requires sub-exponential time). In theory, Shor’s algorithm can be used to break many of the 

cryptography schemes in use today. Not surprisingly, the publication of Shor’s algorithm sparked an 

enormous interest in quantum computing. A few year later, Grover (1996) published a quantum 

algorithm that builds on the algorithm of Deutsch and Josza (1992). The algorithm of Grover performs 

an unstructured search, and achieves a quadratic speedup when compared to a classical algorithm. 

Arguably, Grover’s algorithm is one of the most important algorithm in quantum computing today. It is 

the corner stone of many other quantum algorithms (see e.g., the Quantum Algorithm Zoo) and can be 

used to solve a multitude of problems. 

2 Problem description 

We use Grover’s algorithm as a subroutine in a binary search procedure that can be used to solve any 

discrete optimization problem. A discrete optimization problem may be defined as: 

  

Maximize (or minimize) 𝑔(𝒙) 

Subject to: 

   𝑥𝑖 ∈ 𝛺𝑖,  ∀𝑖: 0 ≤ 𝑖 ≤ 𝑛 

   (any other constraint) 
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Where: 

• 𝑔(𝒙) is the objective function that evaluates a solution 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛}. 
• 𝑛 is the number of decision variables. 

• 𝑥𝑖 is the 𝑖th decision variable. 

• 𝛺𝑖 is the set of discrete values that can be assigned to decision variable 𝑥𝑖. 
 

Note that the objective function and/or constraints do not have to be linear. Examples of discrete 

optimization problems include: 3SAT, knapsack, TSP, non-linear integer programming problems… 

3 Results and conclusion 

We first propose a binary search procedure that requires 𝑂(𝜂𝐿√2𝑛𝑏) operations (where 𝜂 is the 

number of operations required to evaluate the feasibility of a solution, 𝐿 is a logarithmic function of the 

bounds on the optimal solution value, and 2𝑏 is the number of discrete values that can be assigned to a 

decision variable). For instance, for solving a binary knapsack problem that has n items, 𝑏 = 1, 𝑂(𝜂) is 

equivalent to 𝑂(𝑛), and the binary search procedure requires 𝑂(𝑛𝐿√2𝑛) operations (whereas the best 

classical algorithms require 𝑂(𝑛√2𝑛) operations). 

 

We extend this work, and also present two new algorithms that can solve any discrete optimization 

problem using only 𝑂(𝜂√2𝑛𝑏) operations. Not only do these algorithms match the best classical 

algorithms for solving the binary knapsack problem, they can be used to solve any discrete optimization 

problem (regardless of whether constraints and/or objective function are linear; regardless of the 

structure of the problem). We conclude that these algorithms herald a revolution in the field of discrete 

optimization. 
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