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1 Problem context and motivation

We address the bilevel discrete network design problem (DNDP) in transportation [4]. Gi-
ven a transportation network and a budget, the DNDP consists of determining the optimal
subset of links to be added to minimize congestion effects. Congestion is measured using traf-
fic assignment where link travel times are modeled as convex flow-dependent functions and
network users are represented as utility-maximizing agents making selfish route choice deci-
sions. The collective choice of users can be formulated as a Nash equilibrium problem known
as a Wardropian equilibrium [7]. The DNDP admits a natural bilevel optimization where the
leader represents the network manager and the follower is a parameterized traffic assignment
problem (TAP). The TAP is a convex optimization problem whose optimality conditions re-
quire that, for each commodity, all paths used at user equilibrium (UE) have minimum and
equal travel time. Embedding UE conditions in a bilevel optimization formulation via path-
based variables requires handling path set enumeration. While column generation techniques
for (integer-) linear programs are well-developed, this is not the case for nonlinear programs.
This has led researchers to develop link-based formulations amenable to mixed-integer nonli-
near programming approaches [3, 6, 2]. However, computational studies have found that even
after approximating link travel time functions via piecewise linear functions, exact algorithms
struggle to solve the DNDP to global optimality on medium-size networks with more than 20
candidate links [5]. This study introduces a novel path-based approach to solve the DNDP
based on Lagrangian relaxation that overcomes path enumeration challenges by leveraging the
scalability of TAP algorithms.

2 DNDP formulation and solution method

The DNDP is defined on a network with a node set N and link set A as a multi-commodity
network flow problem with nonlinear link travel time functions. Let W be the set of origin-
destination (OD) pair in the network and let drs be the travel demand of OD pair (r, s) ∈ W .
Let Πrs be the set of paths connecting OD pair (r, s) ∈ W and let hπ be the flow on path
π ∈ Πrs. Let xij be the total flow on link (i, j) ∈ A. We denote [δπ

ij ] the link-path incidence
matrix. Let tij(·) be a positive and increasing convex function representing the travel time on
link (i, j) ∈ A. Let A1 be the set of existing links and let A2 be the set of candidate links to
improve the network, A = A1 ∪ A2. For each link (i, j) ∈ A2, let gij be the cost of adding this
link to the network and let yij ∈ {0, 1} be the variable representing this choice. The impact
of the leader decisions in the follower problem is achieved through the linking constraints



xij ≤ yijD wherein D =
∑

(r,s)∈W drs is the total demand in the network. The follower is the
Beckmann formulation of the TAP parameterized by leader variables y [1] :

min
x,h

∑
(i,j)∈A

∫ xij

0
tij(v)dv (1a)

s.t.
∑

π∈Πrs

hπ = drs ∀(r, s) ∈ W (1b)
∑
π∈Π

hπδπ
ij = xij ∀(i, j) ∈ A (1c)

xij ≤ yijD ∀(i, j) ∈ A2 (1d)
hπ ≥ 0 ∀π ∈ Πrs, (r, s) ∈ W (1e)

The leader represents a network manager that aims to minimize the total system travel time
(TSTT) defined as the sum of xijtij(xij) over all links (i, j) ∈ A subject to a budget B. It
is well-known that the TAP admits a unique link flow solution and we denote TAP(y) this
optimal solution of the parameterized TAP (1). The DNDP can be formulated as the following
bilevel optimization problem :

min
y

∑
(i,j)∈A

xijtij(xij) (2a)

s.t.
∑

(i,j)∈A2

yijgij ≤ B (2b)

yij ∈ {0, 1} ∀(i, j) ∈ A2 (2c)
x ∈ TAP(y) (2d)

We propose to solve the bilevel optimization problem (2) by considering its high point re-
laxation and reformulating it using Lagrangian relaxation. Relaxing and penalizing the linking
constraints (1d) leads to a separable, system optimum (SO) formulation of the DNDP that is
solved by iteratively combining the solutions of parameterized SO-TAPs and binary knapsack
problems. This procedure can be embedded in exact algorithms for discrete-continuous bilevel
optimization problems. We discuss algorithmic considerations and present numerical results on
benchmark problem instances for the DNDP.
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