
Polynomial-time algorithms to compute violation in the robust
vehicle routing problem with time windows and budget

uncertainty

Igor Malheiros1,2, Michaël Poss2, Vitor Nesello1, Artur Pessoa3, Anand Subramanian4

1 Atoptima, France
{igor.malheiros,vitornesello}@atoptima.com

2 LIRMM, France
michael.poss@lirmm.fr

3 Universidade Federal Fluminense, Brazil
arturpessoa@id.uff.br

4 Universidade Federal da Paraíba, Brazil
anand@ci.ufpb.br

Keywords : robust optimisation, vehicle routing, dynamic programming.

1 Introduction
The vehicle routing problem (VRP) with time windows (VRPTW) is one of the most studied
VRP variants [2] due to its numerous practical applications emerging from real-life scenarios.

This work addresses the VRPTW and uncertain travel times under the robust optimization
paradigm [1]. The VRPTW is defined on a directed graph G = (V , A), in which V = V∗∪{o, d},
V∗ is the set of customers to be visited, o is the origin depot and d is the destination depot,
whereas A is the set of arcs. Each vertex i ∈ V has a demand qi and with a time window
[ei, li]. Each arc has a travel cost cij and a travel time tij . In addition, let K represent the set
of homogeneous vehicles with capacity Q.

In our robust VRPTW (RVRPTW) model, travel times belong to a known finite set of non-
negative vectors for handling the uncertainty. Specifically, let t̄ij and t̂ij denote the nominal
travel time and the deviation, respectively, for arc (i, j) ∈ A, and Γ ∈ Z+ be a non-negative
integer. We introduce the auxiliary vector δ ∈ {0, 1}|A| such that the travel time vector is given
by tij(δ) = t̄ij + δij t̂ij for each of its components (i, j) ∈ A, and consider the set of scenarios

∆Γ =

δ ∈ {0, 1}|A| :
∑

(i,j)∈A
δij ≤ Γ

 .

Let xk
ij be the binary variable that is equal to 1 iff the vehicle k ∈ K traverses the arc

(i, j) ∈ A, and let yi(δ) be a non-negative real variable indicating the arrival time at vertex i
for a given uncertainty parameter δ ∈ ∆Γ. We describe the RVRPTW as follows:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1)

s.t. (xk
ij = 1) =⇒ (yj(δ) ≥ yi(δ) + tij(δ)), (i, j) ∈ A, k ∈ K, ∀δ ∈ ∆Γ (2)

ei ≤ yi(δ) ≤ li, i ∈ V , ∀δ ∈ ∆Γ (3)
x ∈ X , y ∈ R+, (4)

where X ⊆ {0, 1}|A|×|K| is the set of feasible paths starting at o and ending at d, and covering
all nodes of V∗ exactly once.

In local search-based algorithms, one is interested in checking whether a given path π is
feasible, or in quantifying its infeasibility if π is not feasible.

Let π contains the nodes (0, . . . , n). Moreover, let ai(δ) be the arrival time at vertex i for
scenario δ ∈ ∆Γ, which is defined as ai(δ) = e0, if i = 0 and max{ei, ai−1(δ) + ti−1,i(δ)},
otherwise. The violation at node i for δ ∈ ∆Γ can be defined as f(max{ai(δ) − li}+) for some
non-decreasing function f , such that f(0) = 0 and f(t) > 0 for t > 0, and the violation in π is
given by V (δ) =

∑n
i=1 f(max{ai(δ) − li}+). Overall, the worst-case violation is defined as

V ∗ = max
δ∈∆Γ

V (δ).

The work aims to study the computation of V ∗ for two cases of functions f : (i) the total
tardiness, where f(t) = t, and (ii) the number of failures, where f(0) = 0 and f(t) = 1 if t > 0.

2 Polynomial-time algorithms
Number of failures The total number of failures of a path π is bounded by n. This
allows one to design a recursive function where α(i, γ, ϕ) represents the maximum arrival times
given that ϕ = 0, . . . , i failures have occurred along the nodes 1, . . . , i and using γ = 0, . . . , Γ
deviations so far. Therefore, it is possible to implement a dynamic programming algorithm to
maximize the total number of failures with a time complexity of O(n2Γ).

Total tardiness We compute the maximum total tardiness using a dynamic programming
algorithm described next. For each i = 1, . . . , n and γ = 0, . . . , Γ, we denote by ∆i

γ the
projection of ∆γ on the components 1, . . . , i. Furthermore, for each i = 1, . . . , n, we denote
by τi(δ) = max{ai(δ) − li, 0} the tardiness at vertex i, and by τ i(δ) =

∑i
j=0 τj(δ) the sum

over the tardiness for the first i vertices only. Observe that τ i(δ) depends only on the first i
components of δ.

Our dynamic programming algorithm is based on the value-function

F (i, γ, β) = max
δ∈∆i

γ

τ i(δ) + β · t̂i(δ),

where β = 0, . . . , n. Observe that the optimal solution is given by F (n, Γ, 0).
Overall, all values of F (i, γ, β) can be computed in O(n2Γ).

References
[1] Agostinho Agra, Marielle Christiansen, Rosa Figueiredo, Lars Magnus Hvattum, Michael

Poss, and Cristina Requejo. The robust vehicle routing problem with time windows. Com-
puters & operations research, 40(3):856–866, 2013.

[2] Guy Desaulniers, Oli BG Madsen, and Stefan Ropke. Chapter 5: The vehicle routing
problem with time windows. In Vehicle Routing: Problems, Methods, and Applications,
Second Edition, pages 119–159. SIAM, 2014.

