Polynomial-time algorithms to compute violation in the robust vehicle routing problem with time windows and budget uncertainty

Igor Malheiros^{1,2}, Michaël Poss², Vitor Nesello¹, Artur Pessoa³, Anand Subramanian⁴

¹ Atoptima, France {igor.malheiros,vitornesello}@atoptima.com ² LIRMM, France michael.poss@lirmm.fr ³ Universidade Federal Fluminense, Brazil arturpessoa@id.uff.br ⁴ Universidade Federal da Paraíba, Brazil anand@ci.ufpb.br

Keywords : robust optimisation, vehicle routing, dynamic programming.

1 Introduction

The vehicle routing problem (VRP) with time windows (VRPTW) is one of the most studied VRP variants [2] due to its numerous practical applications emerging from real-life scenarios.

This work addresses the VRPTW and uncertain travel times under the robust optimization paradigm [1]. The VRPTW is defined on a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$, in which $\mathcal{V} = \mathcal{V}^* \cup \{o, d\}$, \mathcal{V}^* is the set of customers to be visited, o is the origin depot and d is the destination depot, whereas \mathcal{A} is the set of arcs. Each vertex $i \in \mathcal{V}$ has a demand q_i and with a time window $[e_i, l_i]$. Each arc has a travel cost c_{ij} and a travel time t_{ij} . In addition, let \mathcal{K} represent the set of homogeneous vehicles with capacity Q.

In our robust VRPTW (RVRPTW) model, travel times belong to a known finite set of nonnegative vectors for handling the uncertainty. Specifically, let \bar{t}_{ij} and \hat{t}_{ij} denote the nominal travel time and the deviation, respectively, for arc $(i, j) \in \mathcal{A}$, and $\Gamma \in \mathbb{Z}_+$ be a non-negative integer. We introduce the auxiliary vector $\delta \in \{0, 1\}^{|\mathcal{A}|}$ such that the travel time vector is given by $t_{ij}(\delta) = \bar{t}_{ij} + \delta_{ij}\hat{t}_{ij}$ for each of its components $(i, j) \in \mathcal{A}$, and consider the set of scenarios

$$\Delta_{\Gamma} = \left\{ \delta \in \{0, 1\}^{|\mathcal{A}|} : \sum_{(i,j) \in \mathcal{A}} \delta_{ij} \leq \Gamma \right\}.$$

Let x_{ij}^k be the binary variable that is equal to 1 iff the vehicle $k \in K$ traverses the arc $(i, j) \in \mathcal{A}$, and let $y_i(\delta)$ be a non-negative real variable indicating the arrival time at vertex i for a given uncertainty parameter $\delta \in \Delta_{\Gamma}$. We describe the RVRPTW as follows:

$$\min \sum_{k \in \mathcal{K}} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}^k \tag{1}$$

s.t.
$$(x_{ij}^k = 1) \implies (y_j(\delta) \ge y_i(\delta) + t_{ij}(\delta)), \quad (i, j) \in \mathcal{A}, k \in \mathcal{K}, \forall \delta \in \Delta_{\Gamma}$$
 (2)

$$e_i \le y_i(\delta) \le l_i, \quad i \in \mathcal{V}, \forall \delta \in \Delta_{\Gamma}$$
(3)

$$x \in \mathcal{X}, y \in \mathbb{R}_+,\tag{4}$$

where $\mathcal{X} \subseteq \{0, 1\}^{|\mathcal{A}| \times |\mathcal{K}|}$ is the set of feasible paths starting at o and ending at d, and covering all nodes of \mathcal{V}^* exactly once.

In local search-based algorithms, one is interested in checking whether a given path π is feasible, or in quantifying its infeasibility if π is not feasible.

Let π contains the nodes $(0, \ldots, n)$. Moreover, let $a_i(\delta)$ be the arrival time at vertex *i* for scenario $\delta \in \Delta_{\Gamma}$, which is defined as $a_i(\delta) = e_0$, if i = 0 and $\max\{e_i, a_{i-1}(\delta) + t_{i-1,i}(\delta)\}$, otherwise. The violation at node *i* for $\delta \in \Delta_{\Gamma}$ can be defined as $f(\max\{a_i(\delta) - l_i\}^+)$ for some non-decreasing function *f*, such that f(0) = 0 and f(t) > 0 for t > 0, and the violation in π is given by $V(\delta) = \sum_{i=1}^{n} f(\max\{a_i(\delta) - l_i\}^+)$. Overall, the worst-case violation is defined as

$$V^* = \max_{\delta \in \Delta_{\Gamma}} V(\delta).$$

The work aims to study the computation of V^* for two cases of functions f: (i) the total tardiness, where f(t) = t, and (ii) the number of failures, where f(0) = 0 and f(t) = 1 if t > 0.

2 Polynomial-time algorithms

Number of failures The total number of failures of a path π is bounded by n. This allows one to design a recursive function where $\alpha(i, \gamma, \phi)$ represents the maximum arrival times given that $\phi = 0, \ldots, i$ failures have occurred along the nodes $1, \ldots, i$ and using $\gamma = 0, \ldots, \Gamma$ deviations so far. Therefore, it is possible to implement a dynamic programming algorithm to maximize the total number of failures with a time complexity of $\mathcal{O}(n^2\Gamma)$.

Total tardiness We compute the maximum total tardiness using a dynamic programming algorithm described next. For each i = 1, ..., n and $\gamma = 0, ..., \Gamma$, we denote by Δ_{γ}^{i} the projection of Δ_{γ} on the components 1, ..., i. Furthermore, for each i = 1, ..., n, we denote by $\tau_{i}(\delta) = \max\{a_{i}(\delta) - l_{i}, 0\}$ the tardiness at vertex i, and by $\tau^{i}(\delta) = \sum_{j=0}^{i} \tau_{j}(\delta)$ the sum over the tardiness for the first i vertices only. Observe that $\tau^{i}(\delta)$ depends only on the first i components of δ .

Our dynamic programming algorithm is based on the value-function

$$F(i,\gamma,\beta) = \max_{\delta \in \Delta^{i}_{\gamma}} \tau^{i}(\delta) + \beta \cdot \hat{t}_{i}(\delta),$$

where $\beta = 0, ..., n$. Observe that the optimal solution is given by $F(n, \Gamma, 0)$.

Overall, all values of $F(i, \gamma, \beta)$ can be computed in $\mathcal{O}(n^2\Gamma)$.

References

- Agostinho Agra, Marielle Christiansen, Rosa Figueiredo, Lars Magnus Hvattum, Michael Poss, and Cristina Requejo. The robust vehicle routing problem with time windows. Computers & operations research, 40(3):856–866, 2013.
- [2] Guy Desaulniers, Oli BG Madsen, and Stefan Ropke. Chapter 5: The vehicle routing problem with time windows. In Vehicle Routing: Problems, Methods, and Applications, Second Edition, pages 119–159. SIAM, 2014.