
Discrete optimization: Limitations of existing quantum
algorithms

Stefan Creemers12, Luis Fernando Pérez1

1 IÉSEG School of Management
{s.creemers, l.perezarmas}@ieseg.fr

2 KU Leuven (ORSTAT)
stefan.creemers@kuleuven.be

Keywords : quantum computing, discrete optimization.

1 Introduction
We investigate the limitations of existing quantum algorithms to solve discrete optimization
problems. First, we discuss the quantum counting algorithm of Brassard et al. (1998), and
show that it has performance that is equivalent to that of a brute-force approach when approx-
imating the number of valid solutions. In addition, we show that a straightforward application
of Grover’s algorithm (referred to as GUM by Creemers and Pérez (2023b)) dominates any quan-
tum counting algorithm when verifying whether a valid solution exists. Next, we discuss the
nested quantum search algorithm of Cerf et al. (2000), and show that it is dominated by a
classical nested search that uses an approach such as GUM to find (partial) solutions to (nested)
problems. Last but not least, we also discuss amplitude amplification (a procedure that gen-
eralizes Grover’s algorithm), and show (once more) that it may not be possible to outperform
GUM.

2 Procedure GUM and its use to solve discrete optimization
problems

GUM can be used as a subroutine in a procedure that solves a discrete optimization problem. For
instance, Creemers and Pérez (2023a) use GUM in a binary search procedure (hereafter referred to
as BSP) that solves the binary knapsack problem. Procedure BSP uses a binary search procedure
that performs L iterations, where L is a logarithmic function of the difference between Vmin
and Vmax (i.e., the upper and lower bounds on optimal solution value V ∗, respectively). In each
iteration, BSP uses GUM to assess whether a valid solution exists that satisfies the constraints of
the optimization problem, and that has a value of at least V = ⌊0.5(Vmin + Vmax)⌋ (note that,
to keep things simple, we assume integer solution values). If a solution x is found for which
fx = 1, we update the best-found solution, and let Vmin = (V + 1). If GUM is unable to find a
valid solution, we let Vmax = (V − 1). This process continues until Vmin > Vmax.

3 Counting algorithm of Brassard et al. (1998)
We discuss the quantum counting algorithm of Brassard et al. (1998; hereafter referred to as
QCB). The goal of a quantum counting algorithm is to approximate the number of valid solutions
(m) in a set of 2n solutions. An (accurate) approximation of m is particularly useful when
using Grover’s algorithm: using m, we can determine the number of iterations (required by
Grover’s algorithm) that maximizes the probability to measure any of the m valid solutions. In

addition, quantum counting algorithms can also be used to evaluate whether a solution exists
(i.e., to approximate P (m > 0)). We show, however, that QCB requires 2n Grover iterations
to accurately approximate m (this results in a performance equivalent to that of a brute-force
classical approach). In addition, we show that any quantum counting algorithm (i.e., not only
QCB) is dominated by GUM when assessing whether m > 0.

4 Nested quantum search algorithm of Cerf et al. (2000)
We discuss the nested quantum search algorithm of Cerf et al. (2000; hereafter referred to
as NQC). NQC is the quantum equivalent of a classical nested search algorithm, and allows to
find a valid solution in a set of 2n solutions using only O(

√
2γn) Grover iterations, where γ

is some number less than or equal to 1 that depends on the structure of the problem. We
have used NQC to solve a discrete optimization problem, and find that: (1) there may only
be a low probability to find an optimal solution, and (2) it may not be possible to impose
all constraints when performing a nested search. Unfortunately, we show that these problems
cannot be resolved, and that a nested quantum search is dominated by a classical nested search
that uses e.g., GUM to find (partial) solutions to (nested) problems.

5 Amplitude amplification
Last, but not least, we also discuss amplitude amplification. Amplitude amplification is a
generalization of Grover’s algorithm that tries to reduce the number of iterations (and hence
operations) required to measure a valid solution. Whereas Grover’s algorithm starts with a
“uniform superposition” of qubits (i.e., a superposition where each qubit has an equal probabil-
ity to collapse into either |0⟩ or |1⟩; a superposition where every solution has equal probability)
and requires π4−1

√
m−12n iterations, amplitude amplification uses a superposition that allows

to measure a valid solution using (far) less iterations. A “good” superposition uses information
of the optimization problem in order to reduce the number of iterations required to measure
a valid solution. Finding such a good superposition, however, may not be that easy. In fact,
we show that, following logical rules, it is possible to end up with a bad superposition that
performs worse than a uniform superposition.

References
[1] Brassard, G., Høyer, P., and Tapp, A. 1998. Quantum counting. In Larsen, K.G., Skyum,

S., and Winksel, G. (Eds.), Automata, Languages and Programming, 820–831. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[2] Cerf, N. J., Grover, L. K., and Williams, C. P. 2000. Nested quantum search and structured
problems. Phys. Rev. A, 61(3), 1–14.

[3] Creemers, S., Pérez, L. 2023a. Discrete optimization: A quantum revolution (Part I),
unpublished preprint at https://dx.doi.org/10.2139/ssrn.4198077.

[4] Creemers, S., Pérez, L. 2023b. Discrete optimization: A quantum revolution (Part II),
unpublished preprint at https://dx.doi.org/10.2139/ssrn.4494506.

[5] Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. Proc. Annu.
ACM Symp. Theory Comput., 212–219.

