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1 Introduction
The emerging sharing economy significantly changed how employees work on a fixed time-

table in the traditional service system. In contrast, now employees have more flexibility to
decide when and if they want to work. Some employees prefer a flexible working schedule.
However, the flexible agents are viewed as independent contractors who are not eligible for
social welfare like unemployment insurance, which harms labor’s benefit[2, 3]. Companies pre-
fer flexible agents because they can avoid paying for their idle periods, reducing overall labor
costs. To address this challenge and pursue a mutually beneficial solution, they proposed a
blended workforce model with a portfolio of permanent and flexible agents[2, 7]. The intro-
duction of flexible agents in staffing management adds complexity to balancing supply and
demand because of the unpredictable availability. Some scholars consider the pricing strategy
to control the number of customers to match supply and demand [1, 10]. However, they ignored
the strategic behavior of flexible agents. The research conducted by Shi et al.[9] and Nguyen
et al. [6] extended the research and further consider the strategic behavior of flexible agents.
However, they did not consider permanent agents.

Our paper introduces a queueing model incorporating both permanent and flexible agents.
Customers’ and agents’ demand is endogenous and a function of the difference between a
reward and a waiting cost. Here, we summarize the main contributions of this paper.
1. We model the system as a Markov chain and obtain the stationary probabilities using the
Matrix geometric approach of Neuts.
2. In the case with priority for flexible agents, we obtain the stationary probabilities in closed
form.
3. We prove that there is a unique equilibrium for the arrival of flexible agents and customers.
4. We then can optimize the price that customers pay to the platform and the reward that the
platform should pay to the agents in order to maximize revenue of the platform.
5. We optimize price and reward and discuss the effect of the system parameters, such as the
level of priority given to flexible agents and the number of permanent agents that are hired.
6. We find that revenue increases with the number of permanent agents. Contrary to the
common practice, revenue reduces with the level of priority for permanent agents.

2 Model Description
We consider an on-demand platform that plays the role of intermedia to allow some customers

to access some workers. The platform has two kinds of workforce, including permanent agents
and flexible agents. Assuming they have the same processing speeds, however, they differ in



their required working periods and unit operating costs. Permanent agents are present and
available at all time when they are not serving a customer, while flexible agents join the
plateform only if the difference between their reward and the time wasted before finding a
customer is sufficiently high.

We consider a market size of customers that can generate up to Λ arrivals per time unit.
Customers decide to join the platform depending on a utility function Uc that depends on
the reward for service R, the price paid to the platform, p, and the cost of waiting c, for an
expected waiting time, EWc. Therefore, we have Uc = R − p − cEWc as in [4]. We assume that
customers are not informed about the state of the system, leading to a randomizing joining
decision, which keeps the Poisson property of the arrival process. Given that the utility of
balking is zero, the arrival rate of customers λ is the solution in λ of Uc = 0, with 0 ≤ λ ≤ Λ.

Assuming that there is also a market size of flexible agents that can generate up to M flexible
agents per time unit. Flexible agents decide to join the platform depending on the reward r
that they might get (the payment) with 0 ≤ r ≤ p and the cost of waiting d for an expected
wait EWf . Therefore, their utility is Uf = r − dEWf . Again, we assume that the utility of
balking is zero so that agents decide to work for the platform only if Uf ≥ 0. The arrival
process of agents (assuming that they are uninformed) is then also Poisson with rate µ that is
the solution in µ of Uf = 0, with 0 ≤ µ ≤ M . We assume the agents won’t come back to the
system once they match with customers.

Assuming there are N permanent agents hired by the on-demand platform. These agents
will always come back to the queue when completing the service. We assume the service rate
of permanent agents is distributed exponentially with rate θ. When both a flexible agent and
a permanent agent are available, a customer is routed to a permanent agent with probability
α. So, with α = 1, it means giving priority to permanent agents.

The objective for the platform is to find the optimal values for p and r, such that the revenue
per time unit, TR = λp − λ1r − wN , is maximized. λ1 means the ratio of the customers served
by flexible agents.

As a first step of the analysis, we assume customers(agents) will immediately leave the system
when matching with agents(customers). Therefore we cannot find some customers and agents
waiting at the same time. The utility function is the same for each individual customer, and
likewise for each flexible agent. After they decide to join the queue, reneging is not allowed. In
this model, a customer can be taken by one flexible or permanent agent. The customers and
agents are arranged based on a first-come-first-served discipline(FCFS).

At a given instant t, we denote by {n1(t), t ≥ 0}, {(n2(t), n3(t)), t ≥ 0} the process of the
number of customers in the queue, the number of permanent agents and flexible agents in the
queue, respectively. Figure (1) illustrates the transition of the system state.

3 Performance Analysis

3.1 Stationary probabilities

Before obtaining the stationary probabilities of the system state, we establish the stability
condition as in Theory 1 for the Markov chain through the Matrix Geometric method.

Théorème 1 The system is stable if and only if

µ

αλx0 + (1 − α) < 1,
λ

µ + Nθ
< 1

where

x0 = (
N∑

j=0

N !θj

(N − j)!(αλ)j
)−1.



FIG. 1 – Markov chain for the number of agents and customers in the queue

Let us consider the process {n1(t), t ≥ 0}. The stationary probabilities of n customers in the
queue are denoted by pn. For ease of exposition, note p0 = p0,0, then pn is given by

pn = ( λ

µ + Nθ
)np0, n ≥ 1. (1)

For the process {(n2(t), n3(t)), t ≥ 0}, the stationary probabilities of x permanent agents
and y flexible agents are denoted by px,y. Based on Equation 1, the summation of px,y is given
by

N∑
x=0

∞∑
y=0

px,y = 1 −
∞∑

n=1
pn = 1 − λ

µ + Nθ

∞∑
n=0

( λ

µ + Nθ
)np0 = 1 − λ

µ + Nθ − λ
p0. (2)

Computing the stationary probabilities of px,y is a complicated task. We obtained the explicit
expression px,y when α = 0 by difference equations. When α = 0, the stationary probabilities
of the system state can be given by

p0,y = Xy
0 p0, (3)

px,y = ax,0Xy
0 + ax,1Xy

1 + ax,2Xy
2 + · · · + ax,xXy

x =
x∑

i=0
ax,iX

y
i , 1 ≤ x ≤ N. (4)

Here,

Xi = λ + µ + (N − i)θ −
√

(λ + µ + (N − i)θ)2 − 4λµ

2λ
,

a0,0 = 1, ax,0 = (−1)x

x!

x−1∏
i=0

(N − i), x ≥ 1,



ax,i = (−1)x−i
x−1∏
k=i

(N − k)
(x − i)! ai,i, 0 < i < x,

ax,x =

 1
x! +
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i=j

( θ

λ
)x−j 1
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x−1∏
i=0

(N − i), x ≥ 1,

p0 =
{

N∑
x=0

x∑
i=0

ax,i

1 − Xi
+ λ

µ + Nθ − λ

}−1

.

When α ̸= 0, px,y can be derived by the Matrix Geometric method because the transition
matrix in the two-dimensional part of the Markov chain has a block-tridiagonal structure
which indicates that is the quasi-birth-death processes(QBD) structure. For further details,
please refer to [5]. We define u = (u0, u1, u2, . . . , uy, . . . ) and uy = (p0,y, p1,y, p2,y, . . . , pN,y),
according to the theoretical foundations of the method, a constant matrix R should exist such
that uy = uy−1R and successive substitution can be used to solve matrix R. After solving
the matrix R, all vectors uy could be derived by uy = u0Ry. The only remaining problem is
deriving the value of u0, which could be derived by Equation 5 and Equation 6. Here B0 and
A0 is transition matrix block.

u0(B0 + RA0) = 0 (5)

1 − λ

µ + Nθ − λ
p0 = ue = u0e +

∞∑
y=1

uye = u0

∞∑
y=0

Rye (6)

3.2 Waiting time of customers
The expected waiting time of customers is given by

EWc = 1
µ + Nθ

p0 +
∞∑

n=1

n + 1
µ + Nθ

pn =
∞∑

n=0

(n + 1)λnp0

(µ + Nθ)n+1 = (µ + Nθ)p0

(λ − µ − Nθ)2 , n ≥ 1. (7)

3.3 Waiting time of flexible agents
The waiting time of flexible agents is related to α. When α = 0, the waiting time for a newly

arriving flexible agent is solely related to the number of flexible agents already in the queue
ahead due to the priority. When α = 1, flexible agents must wait for all permanent agents
that are already in the queue and those expected in the future to leave the system. Hence,
the waiting time of flexible agents is influenced by all future permanent agent’s arrivals. When
α ∈ (0, 1), flexible agents could be matched directly with probability 1 − α. Alternatively, they
need to wait for the service of permanent agents, including those already in the queue and
future arrivals. Therefore, the expected waiting time of flexible agents is determined through
the following scenarios.

Priority to flexible agents Denote P1(y) =
∑N

x=0 px,y, the expected waiting time of flexible
agents is given by Equation 8.

EWf =
∞∑

y=0

y + 1
λ

P1(y) (8)

Priority to permanent agents. We denote random variable Vx as the first passage time
from state x to state x − 1. Based on strong Markov property, we could get the expected value
of Vx shown Equation 9.

Vx = 1
λ

+ 1
λ

N−2−x∑
j=0

x+j∏
k=x

(N − k)θ
λ

+
N−1∏
k=x

(N − k)θ
λ

VN , 0 ≤ x < N (9)



Then, the expected waiting time for flexible agents is given by

EWf =
N∑

x=0

∞∑
y=0

(
x∑

k=0
Vk + yV0)px,y (10)

Random allocation with α We consider the first passage time in the one-dimensional birth-
and-death process with N +1 absorbing states. The state transition can be conceptualized as a
phase-type distribution, which captures the time taken for absorption in a finite-time Markov
chain. Utilizing the first step analysis[8], we can derive the probability of absorbing in state k,
rxk, and the time it takes vk. Then, the expected waiting time is derived.

EWf =
N∑

x=0

∞∑
y=0

(vx +
N∑

k=0

y∏
n=1

rn
xkvk)px,y

The results are consistent with Little’s theorem, so formula EWf = EQf

µ and EWc =
EQc

λ could also be used to infer the expected waiting time of customers and flexible agents.

4 Equilibrium behavior

Suppose the market size Λ and M is infinity. In this context, we can analyze the Nash
equilibrium by examining the equations Uc(λ∗, µ∗) = R−p−cEWc(λ∗, µ∗) = 0 and Uf (λ∗, µ∗) =
r − dEWf (λ∗, µ∗) = 0. Consequently, the equilibrium arrival rates λ∗, µ∗ represent the roots
of two utility functions. However, solving this problem analytically is challenging due to the
complexity of the function set. Given that the expected waiting time EWf (EWc) is strictly
increasing with µ(λ), and the expected waiting time EWf (EWc) is strictly decreasing with
λ(µ), we obtain the equilibrium rates via the following algorithm.

Given initial value λ0, we start to solve µ∗
1 by Uf (λ0, µ∗

1) = 0 using the bisection method.
Substituting µ∗

1 into Uc(λ∗
1, µ∗

1) = 0 yields λ∗
1. By comparing λ0 and λ∗

1, we update the value
accordingly : if the λ∗

1 is greater, we set it to 2 ∗ λ∗
1 ; otherwise, we keep it as λ∗

1
2 . This iterative

process aids in identifying the range of roots. Subsequently, we employ the bisection method
until the optimal value is attained. Additionally, we assert the uniqueness of the solution.

5 Optimization

We consider now the online platform that sets a optimal price p and reward r, such that the
revenue per time unit, λp − λ1r − wN is maximized. Assuming a monopoly scenario where the
platform operates without market competition, they does not leave a positive customer surplus
and agent surplus since, in such a situation, the platform will improve the price and decrease
the payment to agents as much as possible and don’t reduce the arrival rate of customers and
agents[4]. Therefore, the optimal value for pm and rm will make the utility function of customers
and agents equal 0. In other words, pm = R − cEWc(λ, µ), rm = dEWf (λ, µ). Therefore, the
monopoly’s problem is to maximize

max
λ,µ

TR = λ [R − cEWc(λ, µ)] − λ1dEWf (λ, µ) − wN

under the constraints λ ≥ 0 and µ ≥ 0, and find the optimal value λm and µm. The optimization
problem seems to be complicated, and it is hard to solve the analytical solutions. We mainly
use the Particle Swarm Optimization(PSO) algorithm to derive the optimal results.



6 Results and Discussion
We mainly analyze how N ,α,θ,R,c, and d affect the equilibrium behavior and optimal pri-

cing strategy in this section. As the number of permanent agents (N) increases, we observe a
simultaneous rise in the Nash equilibrium arrival rates (λ and µ), optimal price, and optimal
platform revenue. However, the optimal reward experiences a decrease. This intuitive pheno-
menon can be attributed to the diminishing waiting time for customers as N increases, leading
to a higher inclination for customers to join the queue. Consequently, the entry probabilities
for flexible agents increase, allowing the platform to set a higher price and a lower reward,
optimizing overall revenue.

The escalation of R and θ exerts a positive influence on the equilibrium arrival rates λ and
µ. This conclusion aligns with intuition. An increase in service rate or customer reward for
service increases customers’ inclination to join the queue, consequently increasing the arrival
rate of flexible agents. Besides, An increase in R contributes to an enhancement in both optimal
pricing and optimal profit. Conversely, the service rate θ plays a dual role by lowering optimal
pricing and simultaneously boosting optimal profit.

The waiting costs(c) for customers and for flexible agents(d) exert a detrimental impact on
equilibrium arrival rates, prompting a higher optimal price and reward but simultaneously
decreasing platform revenue.

The concept of prioritizing permanent agents with parameter (α) is intriguing. As α increases,
the arrival rate of flexible agents tends to decrease, influencing entry probabilities of customers.
Simultaneously, the platform’s optimal strategy involves a substantial increase in both price
and reward. Remarkably, when α equals zero, both customer and flexible agent arrival rates
tend towards infinity, and the platform’s revenue tends towards infinity.
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