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1 Introduction
Over the years, the size of telecommunication networks is continuously increasing and new
applications are emerging, which is leading to ever-evolving traffic engineering requirements
(multi-constraint routing, resilience to failures, etc.). Most of the time, these requirements can
be efficiently addressed using dedicated combinatorial algorithms based on linear programming.
Nevertheless, these approaches cannot deal with problems that do not get convenient properties
on their solution spaces (such as linearity, convexity, etc...). Furthermore, as telecommunica-
tion ecosystems evolve quickly, routing algorithms need to be frequently upgraded to meet new
requirements with minimal effort.

Emerged in the 70’s, Constraint programming (CP) allows great flexibility in the types of
constraints that can be considered for a combinatorial problem as it is not bounded by any
space property or paradigm. Besides, there is virtually an infinite number of constraint types
that can be independently implemented and introduced into the optimization model. These
two qualities make this paradigm an interesting compromise to overcome some problem speci-
ficities while providing the expected adaptability. This motivated DEFO [1], a declarative
framework based on CP to solve a wide range of traffic engineering problems. It consists of
a Domain Specific Language (DSL) and the corresponding CP model to find an acceptable
subset of (forwarding) routing paths for a set of demands. The modeling and the DSL have
been tailored for Segment Routing [2], a source routing extension to IPv6.

In this talk, we propose a tailored CP solver dedicated to multi-elementary path(s) compu-
tation subject to a subset of constraints that can be declared -or even implemented- by the
user. Unlike in DEFO, the path variable is described explicitly, which is particularly conve-
nient to enforce specific constraint satisfaction (such as resource lower bound constraints) but
also global constraints binding different paths (such as capacity), while controlling the memory
consumption of the feasible domain(s). The specialization of such a solver allows to optimize
all data structures so the core operations (filtering, propagation,...) can be conducted with
minimal computational effort. This advantage allows to cover a large search space and can
provide an optimal solution in a reasonable amount of time without requiring heuristics.

2 The solver
As mentioned before, unlike [1], our solution should be composed of a set of explicit elementary
paths (one for each demand) satisfying the set of declared constraints. To exploit the specific
structure of the problem, we construct variables encoding the choice for an elementary path.
As a consequence, the initial domain of such a variable will be the whole network graph, which
will be reduced as the search goes, until it forms a complete path or an unfeasible solution.

More formally, feasibility conditions can be summarized as follows:



FIG. 1: By removing the arc (i, j) from the domain one can observe that no more ongoing active arcs
exist, meaning that we can remove all arcs outgoing from j.

Définition 1 Given a graph G = (V, A), a set of demands K made of triplets (sk, tk, dk) ∈
V × V × R, ∀k ∈ K. By denoting xk

a ∈ {0, 1} the variable that states if the arc a ∈ A is used
by the demand k ∈ K, one can state that the solution is feasible if the following properties are
satisfied:
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where δ+(v) (resp. δ−(v)) represents the outgoing (resp. ongoing) arcs of v ∈ V , X the vector
of xk

a, ∀k ∈ K, a ∈ A and C, the set of constraints (with X c the set of feasible values of X
according to the constraint c ∈ C).

From those conditions, one can derive elementary rules (e.g. Fig. 1), to check the inner
consistency of each variable domain at any time. On top of practical efficiency, calling all these
rules through a propagation and filtering scheme appears to be polynomial.

We integrate these elementary rules into a more general constraint propagation architecture
to solve a wide range of routing problems with the presented conditions and show the efficiency
and flexibility of such an approach. We will present numerical results for the resolution of a
constrained resource shortest path problem with multiple resources and compare the perfor-
mance of the solver against best-in-class algorithms. On top of its user-friendly capabilities,
we show that the performances can outperform the latter algorithms.
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