
Rolling stocks maintenance scheduling

Tom Ray1,2, Ronan Bocquillon1, Vincent T’kindt1

1 Laboratoire d’Informatique Fondamentale et Appliquée de Tours, Polytech Tours, France
{ronan.bocquillon, vincent.tkindt}@univ-tours.fr

2 SNCF Voyageurs, Ingéniérie du matériel cluster ouest, Saint-Pierre-Des-Corps, France
tom.ray@sncf.fr

Keywords : Rolling stock maintenance, Mathematical Programming, Constraint Program-
ming, Heuristics

1 Introduction
Passenger trains have a very precise schedule due to the transportation demand and railway
systems aim to exploit rolling stocks to their maximum capacity. Maintaining a healthy network
of rolling stocks can be really difficult because it must rely on an effective maintenance schedule
that does not impact the transportation plan. But while some maintenance operations are
known beforehand, some repairing that could not have been predicted still needs to be done.
These jobs are brought to our knowledge through the train itself. The time allowed to fix these
malfunctions is relatively short (from a few hours to a few days). It is allowed to schedule a
complete repair, or a partial repair named diagnosis that ensures that the train can be used in
normal condition even if the operation is not completely done. The aim of our study is to find
an efficient way to schedule the starting times of the maintenance jobs, completely or not, so
that their due dates are met.

2 Problem definition and associated models

2.1 Problem definition
Let I = {1, ..., n} be the set of jobs to schedule and J = {1, ...,m} be the set of tracks available
for the maintenance. Each job i has a repair duration pi, a diagnosis duration pd

i , a due date
di, a tardiness cost wi, a diagnosis cost ui and a need for a specific infrastructure. Each track
j has one or more infrastructures. Starting from the compatibility between the infrastructure
requirements of the jobs, those available on the tracks and the availabilities of trains and tracks,
we define T d

ij as the set of time intervals at which job i can start on track j. We define Ti

as the tardiness of job i. Let Si be the starting time of job i in a given schedule, then we
have: Ti = Si − di. In this problem, we aim to minimize the sum of the weighted tardiness of
jobs while limiting the number of performed diagnosis, especially on highly important repairs.
We denote by ε the total cost allowed for the performed diagnosis. This problem is noted
P |T d

ij |
∑
wiTi and is strongly NP-Hard.

2.2 Mixed Integer Linear Programming and Constraint Programming
We present a time-indexed mixed integer linear programming (MILP) model based on binary
variables representing the times t at which jobs start. We define xij t as the binary variables
representing the times t that can be chosen as the starting time of job i on track j. We also
define yi as the variable associated with job i, representing the decision on the realisation mode
(complete repair or diagnosis).The constraints of the model ensure that for each operation, one
starting time is selected, they also ensure that the jobs do not overlap.



We also present a constraint programming (CP) model based on interval variables. For this
model we define Ji as the interval variable associated with job i, Jij as the interval variable
representing the possibility of job i being scheduled on track j and Jc

ij (resp. Jd
ij) as the

interval variables representing the possibility of job i being scheduled on track j in complete
repair mode (resp. in diagnosis mode). To guarantee that exactly one track and one mode
(complete repair or diagnosis) is selected for each job, we use two levels of alternatives: the
first one ensures that exactly one track is selected for each job, while the second ensures that
exactly one mode is selected for each job. For each track, we use a disjonctive constraint to
ensure that the jobs do not overlap. The complete models are not reported in the paper but
they will be presented during the conference.

3 Two local search heuristics
In this section, we introduce two local search heuristics. The concept used is the same for
both as they are local search heuristics: we define a neighbourhood of solutions to explore
and we try to iteratively improve our current solution, step by step, until we are stuck into
a local optimum or we have reach a given time limit. Each heuristic exploits two procedures:
the first one, called intensification, explores the neighbourhood of a solution. The second one,
called diversification, is used in case we are stuck into a local optimum to try to jump to
another neighbourhood that may be more interesting. The first heuristic is a Local Branching
(LB) heuristic [2] that exploits the MILP formulation. For this heuristic, we use a Hamming
distance constraint to define the neighbourhood of the current solution. This distance counts
every change between two consecutive iterations. The intensification (resp. the diversification)
process consists in upper bounding (resp. lower bounding) the hamming distances. The second
heuristic is a variable partitioning local search (VPLS) heuristic [1] that exploits the constraint
programming formulation. The neighbourhood is defined by randomly selecting multiple non-
overlapping intervals and a set of tracks. At each iteration, we free everything that has been
scheduled in the selected intervals and tracks. Everything else is set exactly as it is in the
current solution. Then, we repeat as many iterations as possible within a given time limit.
The complete description of the proposed heuristics are not reported in the paper but they
will be presented during the conference.

4 Conclusions
We conducted experiments on a set of randomly generated instances that follow a structure
similar to the case of rolling stocks fleets and maintenance sites located in Paris, more specifi-
cally in the northern part of the city, and represent scenarios that the planners may encounter
during their work. After evaluation, we conclude that LB and VPLS improve the results of
their respective parent model alone but also that on the average LB improves the results of
both models. The VPLS heuristic is faster than LB in most cases but not necessarily more
efficient. Therefore, VPLS is more interesting to use with a reduced time budget. But as long
as efficiency is considered, LB outperforms VPLS. More detailed results and perspectives will
be discussed during the conference.

References
[1] F Della Croce, Andrea Cesare Grosso, F Salassa, et al. Matheuristics: embedding milp

solvers into heuristic algorithms for combinatorial optimization problems. In Heuristics:
theory and applications, pages 31–52. NOVA Publisher, 2013.

[2] Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98(1):23–
47, Sep 2003.


