Moderate Exponential-time Quantum Dynamic Programming

Across the Subsets for Scheduling Problems

Camille Grange®?, Michael Poss', Eric Bourreau', Vincent T’kindt?, Olivier Ploton?

1 University of Montpellier, LIRMM, CNRS, France
{camille.grange, michael.poss, eric.bourreau}@lirmm.fr
2 SNCF, Technology, Innovation and Group Projects Department, France
3 University of Tours, LIFAT, France
{tkindt, olivier.ploton}@univ-tours.fr

Keywords : quantum optimization, Grover algorithm, dynamic programming, scheduling.

1 Introduction

The interest in quantum computing to solve combinatorial optimization problems has been
growing for several years in the operational research community. More precisely, we distinguish
two branches. The first one relates to heuristics, which can be implemented on current noisy
quantum computers because the quantum part can be made rather small. The second branch
relates to ezxact algorithms. Unlike the previous algorithms, it is impossible to implement them
today but theoretical speed-ups have been proved for several types of problems.

The most emblematic algorithm of the latter branch is Grover Search [4], which achieves
a quadratic speed-up when searching for a specific element in an unsorted table. Durr and
Hoyer [3] use Grover Search as a subroutine for a hybrid algorithm, Quantum Minimum Finding
(QMF), that finds the minimum of an unsorted table. Later, Ambainis et al. [1] combine QMF
with dynamic programming to address NP-hard vertex ordering problems such as the Traveling
Salesman Problem. These problems satisfy a specific property which implies that they can
be solved by classical dynamic programming in O*(¢"), where O* is the usual asymptotic
notation that ignores the polynomial factors, and c is usually not smaller than 2. The hybrid
algorithm reduces the complexity to O*(cguant) for cquant < c. Following this work, other
NP-hard problems have been tackled with the idea of combining QMF and classical dynamic
programming, such as for the Steiner Tree problem (Miyamoto et al. [6]).

The purpose of this work is to provide a general method, a quantum-classical algorithm,
adapting the seminal idea of Ambainis et al. [1], to reduce the worst-case time complexity
of solving problems on which the Dynamic Programming Across the Subsets (DPAS) can
be applied. These types of problems are directly inspired by NP-hard scheduling problems
described by T’kindt et al. [9] but the mathematical formulations throughout this work aim
to be as generic as possible, leading the proposed algorithm to be applicable to a broader
class of problems. In particular, it applies to problems with temporal constraints and non-
linear objective functions found in the scheduling literature. Herein, we focus on two single-
machine scheduling problems (1|d}| > wiCy and 1|rj| 32, w;Uj, defined later) and show that
our algorithm reduces the worst-case time complexity of problems compared to the current
best-known classical algorithms, sometimes at the cost of an additional pseudo-polynomial
factor. Due to space limit, all proofs of propositions are omitted. We only provide a sketch of
our main result.

2 Dynamic Programming Across the Subsets (DPAS)

Let us consider a scheduling problem of n jobs

P min f(m),
where II C S}, is the set of feasible permutations of [n] := {1,...,n} according to given

constraints and f is the objective function. We consider a related problem P useful for deriving
the dynamic programming recursion, for which we specify the instance: for J C [n] and t € Z,
we define

P(Jt): L Loin f(m, J.t) (1)

as the nominal scheduling problem P that schedules only jobs in J and starts the schedule at
time ¢. Let us note OPT][J,¢] the optimal value of P(J,t). It results that solving P amounts
to solving P([n],0), because P consists in scheduling all the jobs and starting at time ¢ = 0.
In this section, we describe two classes of scheduling problems that can be solved by our
hybrid algorithm we call Quantum Dichotomic DPAS (Q-DDPAS). They differ in the type
of recurrence they satisfy to compute the optimal value OPT][J,¢] for a given J C [n] and
t € Z. The first class is composed of problems for which the constraints are compatible with
the addition of optimal values OPT[X, '], for X C J and ¢’ € Z, whereas the second class
contains problems for which the constraints impose the composition of the OPT[X, ¢].

2.1 Additive DPAS

Let us start by defining problems for which the constraints are compatible with the addition
of optimal values of problems on sub-instances, formally defined below. For instance, one can
think of deadline or precedence constraints. Problem P, i.e. P([n],0), can be solved by Q-
DDPAS if the related problem P satisfies the two recurrences (Add-DPAS) and (Add-D-DPAS)
below. Henceforth, we denote by 2 the set of all subsets of [n], and by [a, b] the set {a, ..., b}.
Let us introduce the first recurrence.

Property 1 (Additive DPAS). There exists a function g : 2" x [n] x T — R, computable in
polynomial time, such that, for all J C [n] and for all ty € T,

OPTI[J, to] = rjlqei?{OPT[J\ (i} to] + 9(J, . to) } (Add-DPAS)

initialized by OPTI[0, to] = 0.
Proposition 2. Dynamic programming (Add-DPAS) solves P in O*(2").

Throughout, we commit a slight abuse of language by letting (Add-DPAS) both refer to the
property satisfied by a given optimization problem and to the resulting dynamic programming
algorithm.

Property 1 expresses that finding the optimal value of P for jobs in J and starting at time ¢
is done by finding over all jobs j € J the permutation that ends by j with the best cost value.
Function g represents the cost of j being the last job of the permutation. Notice that isolating
the last job of the permutation is a usual technique in scheduling. In the second recurrence
below, we provide a similar scheme, where instead of one job, we isolate half of the jobs in

J, turning the computation of g to the resolution of another problem on a sub-instance with
|.7]/2 jobs.

Property 3 (Additive Dichotomic DPAS). There exist two functions t g : ol ol s 5 T
and h : 20" x 2"l x T — R, computable in polynomial time, such that, for all J C [n] of even
cardinality, and for allt € T,

OPT[J,#] = min {OPT[X,#]+ h(J, X,t) + OPT[J\ X, taun(J, X,8)]} (Add-D-DPAS)

IX|=[J]/2

initialized by the values OPT[{j},t] for each j € [n] andt € T.

For a given X C J, the above computes the best permutation of jobs in X starting at time
t, and the best permutation of jobs in J \ X starting at time g, adding the function A that
represents the cost of the concatenation between these two permutations.

We use the notation fi(n) = w(f2(n)) if fi dominates asymptotically fo.

Proposition 4. Dynamic programming (Add-D-DPAS) solves P in w(|T| - 2").

Notice that if n is not a power of 2, we can still add fake jobs without changing the following
conclusion: solving P with (Add-DPAS) is faster than with (Add-D-DPAS). However, in the
next section, we describe a hybrid algorithm Q-DDPAS that improves the complexity of solving
P by combining recurrences (Add-DPAS) and (Add-D-DPAS) with a quantum subroutine.

Before introducing this algorithm, we illustrate the two recurrences above with the NP-hard
single-machine scheduling problem with deadline constraints and minimization of the total
weighted completion time (1|d;| >=; w;C;). For each job j € [n], we are given a weight w;, a
processing time p;, and a deadline d;. Let T = [0,p([n])], where we note p(J) = Zpi. We

ieJ
consider the related problem (1) as follows: for J C [n] and t € T,

M(J,t) = {7 € Sy|Cj(r) < dj —t,Vj € J},

where C is the completion time of job j, and for 7 € II(.J,t):

flm, Jt) = > wy(Ci(m) + 1)
Jjed
Thus, the optimal solution of P(J,t) is the best feasible solution for jobs in J supposing that
the machine is available at time t (instead of 0, as usual). This leads to considering the effective
deadlines (d; — t) instead of d; in the constraints and adding the term ¢ - 37, ; w; in the cost

function. Our problem of interest P is P([n],0), and one readily verifies that P satisfies both
recurrences. Indeed, (Add-DPAS) is valid with: V.J C [n],Vj € J,Vt € T,

wi(p(JU{j}) +1) ifczj >p(JU{j}) +t
+ 00 otherwise

g(J7j7t) = {

where the computation of ¢ is polynomial (linear). Recurrence (Add-D-DPAS) is also valid
with the following functions: VX C J C [n] : | X| = |J|/2,Vt € T,

tshift(Jaxat):t+p(X) and h(JvXat) :07

(pj+t) ifd;>pj+t
initialized by, for j € [n] and t € T, OPT[{j},t] = wi(p; +1t) ifd; > p; +
+ 00 otherwise

2.2 Composed DPAS

We study now problems whose constraints enable only the composition of problems of sub-
instances. It mainly concerns scheduling with release date constraints.

To ease the understanding, we begin with a practical example, where P is the problem of
minimizing the total weighted sum of late jobs with release date constraints (1|r;| > w;U;).
Each job j € [n] has a weight w;, a processing time p;, a due date dj;, and a release date ;.

We define a new related problem P’ such that, for a given € € E := |lO, ij]] , the optimal
j=1

value OPT[J,t, €] of P'(J t,¢), for J C [n] and t € T := |’0,ij U {+o0}, is the minimum
j=1

makespan for jobs in J beginning at time ¢ where the weighted sum of late jobs is e. More

precisely,

Pl J t . i CYmax)
(St min, | Cmax(m)

where Chay is the makespan (maximum completion time), and

'(J,t,e) = {7? € Sy :Cj(n) > max(t,r;) + p; and ijUj(w) = e} ,

jed
where Uj indicates if job j is late, namely, U; = 1(; i 1ate}. Thus, our problem of interest is

P = Hé%l{e : OPTI[n],0,¢] < +o0}.

One can show that P’ satisfies the following recurrence, inspired by the work of Lawler [5]
for the problem of minimizing the total weighted number of late jobs on a single machine under
preemption and release date constraints (1|r;, pmtn| Y w;U;). For J C[n|,t € T, e € E,

OPT[J, ¢, = rjnei?{OPT [{j}, OPT[J \ {j}.t, 6170}70PT[{]'},0PT[J\ (i}t e— wj],wj} } .

job j is not late job j is late

This leads to the more general recurrence below. Henceforth, we consider a generic problem
P related to P’ for sets T, E C Z.

Property 5 (Composed DPAS). Forall J C[n|,t €T ande € E,

OPT([J, ¢, = Epeig{OPT (7}, OPTII\ {j} t,e — €],€] }, (Comp-DPAS)

Jj€J

initialized by the values of OPT[{j},t,€] for all j € [n], e € E and t € T. Notice that for
J Cn], t €T and e € E, we adopt the convention OPT[J,t, €] = +oo for e ¢ E.

Proposition 6. For ¢y € E, (Comp-DPAS) solves P'([n],0,) in O*(|E|* - |T| - 2").

It directly results from the previous proposition that (Comp-DPAS) solves P in O*(|E|? -
|T| - 2™). As for Additive DPAS, we provide a dichotomic counterpart of (Comp-DPAS) as
follows.

Property 7 (Composed Dichotomic DPAS). For all J C [n] of even cardinality, t € T and
e F,

OPT[J;t,] = min {OPT[X,OPT[J\X,t,e—e’]7e']}, (Comp-D-DPAS)
XeJ:|X|=|J|/2

initialized by the values of OPT[{j},t,€] forallj € [n],t €T ande € E.
Proposition 8. For ¢y € E, (Comp-D-DPAS) solves P'([n],0,¢) in w(|E|*-|T| - 2").

The previous proposition naturally implies that (Comp-D-DPAS) solves P in w(|E|?-|T|-2").
As for Additive DPAS, we notice that, with a classical dynamic programming algorithm, the
time complexity to solve P with (Comp-DPAS) is better than with (Comp-D-DPAS). We show
next that our hybrid algorithm Q-DDPAS improves these complexities.

3 Hybrid Algorithm Q-DDPAS

In this section, we describe our hybrid algorithm Q-DDPAS adapted from the work of Ambainis
et al. [1]. Notice that we design it in the gate-based quantum computing model and we assume
to have random access to quantum memory (QRAM). We underline that this latter assumption
is strong because QRAM is not yet available on current universal quantum hardware. We
begin with the description of Q-DDPAS for problems P whose related problem P satisfies
recurrences (Add-DPAS) and (Add-D-DPAS). Q-DDPAS for problems whose related problem
P’ satisfies recurrences (Comp-DPAS) and (Comp-D-DPAS) derives directly.

First, let us introduce the Quantum Minimum Finding (QMF) of Durr and Hoyer [3], which
constitutes a fundamental subroutine in our algorithm. This algorithm essentially applies
several times Grover Search [4].

Definition 9 (Quantum Minimum Finding [3]). Let f : [n] — Z be a function. QMF computes
the minimum value of f and the corresponding minimizer arg mine{f(i)}. The complexity
of QMF is O (y/n - Cy(n)), where O(Cy(n)) is the complezity of computing a value of f.

Without loss of generality, we assume that 4 divides n. This can be achieved by adding
at most three fake jobs and, therefore, does not change the algorithm complexity. Q-DDPAS
consists of two steps. First, we compute classically by (Add-DPAS) the optimal values of P on
sub-instances of n/4 jobs and for all starting times ¢t € T. Second, we call recursively two times
QMF with (Add-D-DPAS) to find optimal values of P on sub-instances of /2 jobs starting at
any time ¢ € T', and eventually of n jobs starting at ¢ = 0 (corresponding to the optimal value
of the nominal problem P). Specifically, we describe Q-DDPAS in Algorithm 1.

Algorithm 1: Q-DDPAS for Additive DPAS

Input: Problem P satisfying (Add-DPAS) and (Add-D-DPAS)

Output: OPT|[n],0] with high probability

begin classical part

for X C [n]| such that | X| =n/4, andt € T do

1 | Compute OPT[X, ¢] with (Add-DPAS) and store the results in the QRAM;

begin quantum part

2 Apply QMF with (Add-D-DPAS) to find OPT{[[n], 0];

To get values for the QMF above (the values OPT[J,¢] for J C [n] of size n/2 and
t € T), apply QMF with (Add-D-DPAS):

4 To get values for the QMF above (the values OPT[X,] for X C [n] of size n/4
and t' € T'), get them on the QRAM

Theorem 10. Q-DDPAS for Additive DPAS solves P in O*(|T| - 1.754™).
Proof. We provide next a sketch of the proof.

o Classical part: computing all OPT[X,¢] for all X of size n/4 and for all ¢t € T' (Step 1)
is done by (Add-D-DPAS) in time O* (|T]- X305 k(})) = O*(|T| - 208117),

o Quantum part: according to QMF complexity (Definition 9), computing OPT[[n], 0] with
QMF (Step 2) is done in O ((n72) -Ch (n)), where (' (n) is the complexity of computing
OPT|J,t] for a J of size n/2 and t € T'. The essence of the quantum advantage here is that
we do not need to enumerate all sets J and all time t but we apply the QMF in parallel

to all at once. Notice that (n%) is the number of balanced bi-partitions of [n], namely

the number of elements in (Add-D-DPAS) when computing OPT[[n],0]. Thus, C;(n) is

exactly the complexity of QMF applied on Step 3, namely C}(n) = O ((Z;Z) : CQ(TL))
where Co(n) is the complexity of computing OPT[X, '] for X of size n/4 and ¢ € T.

Those values are already computed and stored in the QRAM (Step 4), namely, C2(n) =

O*(1). Thus, the quantum part complexity is O* ((n’}Q) (Z;i)) = O*(207n),

Eventually, Q-DDPAS complexity is the maximum of the classical and the quantum part
complexity. Specifically, the total complexity is O*(|T| - 20-81") = O*(|T| - 1.754™). O

The resolution of a problem P satisfying (Comp-DPAS) and (Comp-D-DPAS) derives nat-
urally. It amounts to iterate over all ¢ € E and solves each P([n],0,¢) with Q-DDPAS rely-
ing on the Composed DPAS recurrences in this case, namely replacing (Add-DPAS), respec-
tively (Add-D-DPAS), by (Comp-DPAS), respectively (Comp-D-DPAS).

Theorem 11. Q-DDPAS for Composed DPAS solves P in O*(|E| - |T| - 1.754™).

We summarize in the first part of Table 1 the complexities of solving the studied scheduling
problems with Q-DDPAS and compare them with the complexities of the best-known classi-
cal algorithms. Q-DDPAS improves the exponential part of the complexity, sometimes at the
cost of a pseudo-polynomial factor. We complete the second part of Table 1 with the appli-
cation of Q-DDPAS to other single-machine scheduling problems (1|| Y- w;T}, 1|prec| - w;C;
for Additive DPAS, and 1|r;| > w;C; for Composed DPAS). The last result is an adaptation
of Q-DDPAS to decision problems, applied to the 3-machine flowshop (F'3||Ciax). All these
results are detailed in the long version of this work (https://hal.science/hal-04296238v1).

Problem Q-DDPAS Best-known classical algorithm
1d;| 3w, C; 0" (3 pj - 1.7547) o(2") [9]
r;| SwU; O* (T wy)® - Xop; - 1.754") O (X w;-22p;-2") [7]
1| > w,T; 0" (X p; - 1.7547) o(2") [9]
Lpree| > w,C, 0 (1.7547) O ((2 = €)), for small e [2]
Urj| Zw;Cy O (Cwy)® - (Cpy)*-1.754") O (X w; - (X py)?-2") [7]
F3)|Cooe 0" (X pyj)* - 1.7547) 0*(3") [g]

TAB. 1: Comparison of complexities between our hybrid algorithms and the best-known classical
algorithms.

References

eve—

Jevgenijs Vihrovs. Quantum speedups for exponential-time dynamic programming algo-
rithms. In SODA. SIAM, 2019.

[2] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk.
Scheduling partially ordered jobs faster than 2"™. Algorithmica, 68:692-714, 2014.

[3] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arXiv
preprint quant-ph/9607014, 1996.

[4] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212-219, 1996.

[5] Eugene L Lawler. A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Annals of Operations Research, 26:125-133,
1990.

[6] Masayuki Miyamoto, Masakazu Iwamura, Koichi Kise, and Francois Le Gall. Quantum
speedup for the minimum steiner tree problem. In COCOON. Springer, 2020.

[7] Olivier Ploton and Vincent T’kindt. Exponential-time algorithms for parallel machine
scheduling problems. Journal of Combinatorial Optimization, 44(5):3405-3418, 2022.

[8] Lei Shang, Christophe Lenté, Mathieu Liedloff, and Vincent T’Kindt. Exact exponential
algorithms for 3-machine flowshop scheduling problems. Journal of Scheduling, 21:227-233,
2018.

[9] Vincent T’kindt, Federico Della Croce, and Mathieu Liedloff. Moderate exponential-time
algorithms for scheduling problems. JOR, pages 1-34, 2022.

https://hal.science/hal-04296238v1

	Introduction
	Dynamic Programming Across the Subsets (DPAS)
	Additive DPAS
	Composed DPAS

	Hybrid Algorithm Q-DDPAS
	References

