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1 Introduction

Zener [1] initiated exploration into minimizing costs in engineering design problems, spark-
ing what is now recognized as geometric programming (GP). Zener’s contributions, coupled
with subsequent papers by Duffin and Peterson [2], established the essential foundations of
this discipline. The term geometric programming emerged due to the substantial influence of
the arithmetic-geometric mean inequality during its early evolution. Initially, geometric pro-
gramming primarily minimizes posynomial functions while upholding inequality constraints.
A general form of a geometric program can be then stated as follows
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where x is a strictly positive M -dimensional vector, the exponents αij are arbitrary real num-
bers and the coefficients ci are positive. This work focuses on solving geometric programs with
joint probabilistic constraints using recurrent neural networks.

2 A recurrent neural network approach

In this work, we first the following stochastic GP problem
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where {ci}i∈Ik
, k ∈ {1, .., K} are pairwise independent normally distributed random variables

i.e ci ∼ N (µi, σ2
i ), i ∈ Ik where µi ≥ 0 is the mean value and σi is the standard deviation of

ci. The coefficients aij , i ∈ Ik, j = 1, ..., M are deterministic, and 1 − ϵ is a given probability
level with ϵ ∈ (0, 0.5].

We first derive a biconvex equivalent for (2)-(3), then we study the optimality conditions
using the partial KKT system. Based on the optimality conditions, we propose a recurrent



neural network, see Figure (1), that is stable and converges in the sense of Lyapunov to a
solution to the initial problem.

Later, we study the case where {ci}i∈Ik
, k ∈ {1, .., K} are pairwise dependent and normally

distributed random variables using Copula theory.

FIG. 1: A simplified circuit implementation of the recurrent neural network

3 Experimental results
To assess the effectiveness of our approach, we examine a transportation problem in three
dimensions. Here, the aim is to determine the best form for a transportation box while con-
sidering geometric limitations. We evaluate our approach’s solution compared to the piecewise
linear approximation method presented in [3]. Results show that the recurrent neural network
approximates better the optimal solutions and covers well the risk area.

4 Conclusion
This research yields a significant advantage, which is the capability to solve independent and
dependent joint chance-constrained geometric programs without relying on convex or linear
approximation methods. The numerical experiments showcase that our approach approximates
the optimal solution better than the existing state-of-the-art methods. Moreover, it effectively
encompasses the risk area by furnishing robust solutions.
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