
A multi-objective optimization model for opportunistic
maintenance of repairable spare parts

Abdelhamid Boujarif1, David W. Coit2, Oualid Jouini1, Zhiguo Zeng1 and Robert Heidsieck3

1 Industrial Engineering Laboratory (LGI) CentraleSupélec, Paris-Saclay University, Gif-sur-Yvette,
France

{abdelhamid.boujarif, oualid.jouini, zhiguo.zeng}@centralesupelec.fr
2 Department of Industrial and Systems Engineering, Rutgers University, USA

coit@soe.rutgers.edu
3 General Electric Healthcare, 283 Rue de la Minière, 78530 Buc, France

robert.heidsieck@ge.com

Mots-clés : Multi-objective optimization, opportunistic maintenance, reliability, dependency

1 Introduction

Closed loop supply chains (CLSC) have become necessary to advance sustainable practices in
the medical systems industry [5, 2]. The recovery processes, including repair, remanufacturing,
and recycling, have been established as key drivers in reducing the demand for virgin materials,
curtailing energy use, and limiting waste, thereby contributing to environmental and economic
goals [10].

Traditional maintenance strategies recommend using new spare parts to reduce the likelihood
of failure after repair. On the other hand, CLSC considers repaired units to be as good as new
ones, which might lead to future failures and limit the circular benefit of this framework.
Thus, there is a need to improve repair center operations to balance between reliability and
sustainability goals.

Opportunistic maintenance extends maintenance to at-risk components during opportunis-
tic downtime [6]. The literature primarily discusses age-based and block replacement policies
[8, 9]. Other papers adopt a single-objective appraoch focusing on minimizing long-run main-
tenance costs [1]. However, this method often results in excessive usage of components due
to the intricate dynamics of CLSC and the severity of failure incidents. Besides, studies are
lacking in incorporating inter-component dependencies in OM policies. In addition, evaluating
system reliability with interdependent components is challenging [11]. Techniques like fault
tree analysis, Markov chain, and copula are commonly used, but they suffer from limitations
in complex scenarios [4, 7].

This paper aims to fill this gap by proposing a multi-objective framework that leverages esti-
mating the reliability under dependency of a spare part after repair and its use for maintenance
decisions. We use Non-dominated Sorting Genetic Algorithm (NSGA) to suggest proactive re-
placements during the downtime opportunity of the spare part. The developed model considers
maintenance cost, the long-run failure cost, and the environmental cost.

2 Modeling and problem formulation
In the context of a Closed-Loop Supply Chain (CLSC) for medical equipment, we focus on

balancing cost and reliability in spare parts management through opportunistic maintenance.
Our model addresses the repair of medical units by considering replacing failed and at-risk

components to enhance system reliability. Maintenance decisions are influenced by economic,
stochastic, and structural dependencies, affecting costs, failure rates, and maintenance proce-
dures.



The model aims to minimize costs, environmental impact, and risk, adhering to a reliability
standard. It leverages a single opportunity window for decision-making, reflecting practical
constraints in maintenance operations. To formally define the optimization model, we introduce
the following notations :

— ζ = [1, 2, 3, ..n] : set of components in
the spare part,

— Costc : price of component c,
— Mc : the average lifetime of component

c,
— RVc = costc

Mc
: residual value of com-

ponent c,
— LC : labor cost,
— Cost0 : logistic cost for each repair (ship-

ping cost to replace the LRU with a new
one at the client site),

— τc : disassembling time for component c,
— ac : age of component c,
— Rc(t) : reliability function of component

c,
— fc(t) : probability density function of fai-

lure time for component c,
— Rsys(t; a1, a2, .., an) = h(R1(t; a1), ..., Rn(t; an)) :

reliability function of the spare part as a
function of reliability of its components,

— fsys(t; a1, a2, .., an) : probability density
function of system’s lifetime,

— T : planning horizon,
— r : interest rate,
— D = (Dij)CXC : disassembly matrix for

the system,
— sc : state of component c,

sc =
{ 1, if component c is in a failing state,

0, otherwise.
,

— Sprice : revenue from selling the spare
part,

— Rmin : minimum required reliability.

One of the characteristics of spare parts reparation is that the components may have different
ages with a large variance. Therefore, estimating the unit reliability is not straightforward. We
propose to express the unit’s reliability Rsys as a function of components’ reliability and ages.
For example, for multi-independent units in series, the reliability of the part can be expressed
as Rsys(t) =

∏
c∈ζ Rc(t; ac).

Decision variables :we define the binary decision variable xc for each component c, with
xc =

{ 1, if component c is replaced preventively,
0, otherwise.

Constraints : The model incorporates constraints that ensure failed components are replaced
correctively (1) and the positive operational benefit (2).

xc + sc ≤ 1, ∀c ∈ ζ. (1)

Sprice − Cmaintenance > 0. (2)

Objective Functions : The multi-objective optimization problem aims to minimize the fol-
lowing costs :
Maintenance Cost (Cmaintenance) : This cost includes expenses due to corrective and preven-
tive replacements as well as labor costs involved in the maintenance process :

Cmaintenance = Cr + CL, (3)

where Cr =
∑

c∈ζ(xc + sc) × Costc. is the replacement cost calculated by summing the costs
of components that are replaced either correctively or preventively. CL = 2 × LC × τgroup

represents the labor cost, which is proportional to the disassembly time required to replace
the components. We use an approach developed by [3] to calculate the total maintenance time
for a component group using the structure connection between components. The cumulative
disassembling time of a component c, denoted by τD

c , can be defined as the sum of disassembling
times for all the components on the path of disassembly (Eq. (4)).

τD
c =

∑
k∈ζ

τk × Dc,k. (4)



For a group of components, there may be some intersections between the disassembly path of
different items. As a result, the disassembly duration of the intersection nodes must be counted
only once, even if it appears on several ones. Eq. (5) gives the total disassembly time, denoted
by τgroup, of the replaced components :

τgroup =
∑
c∈ζ

(sc + xc) × τD
c −

∑
c∈ζ

τD
c × max(

∑
k∈ζ

(sk + xk) × Dk,c − 1, 0), (5)

the first term represents the total disassembly duration of all replaced components when repla-
ced separately ; the second term is the time saving due to intersections among the disassembly
paths. In case there is no intersection, the second part in Eq. (5) equals to zero.
Environmental Impact (Cenvironment) : The environmental cost is associated with the waste
of unused remaining life of components that are replaced preventively :

Cenvironment =
∑
c∈ζ

xc × RVc

Rsys(0; a1(1 − s1), .., an(1 − sn)) ×
∫ +∞

0
tfc(t; ac) dt. (6)

Risk Cost (Crisk) : The risk cost accounts for potential failures within the planning horizon.
When a failure occurs, the logistic cost Cost0 must be counted. However, to compare the future
payment to the present time, its present value must be calculated.
The age of the replaced components (xc + sc = 1) would be restored to zero, while it won’t
change for the other components. So for a small variation of time, the probability of failure
can be expressed using the calculated probability density function (pdf ) of the system fsys and
the present value of the logistic cost is Cost0 × (1 + r)−t. Thus, the total present value of the
expected failure cost during the planning horizon, Cf , can be expressed as

Crisk = Cost0 ×
∫ T

0 fsys(t; a1(1 − (x1 + s1)), .., an(1 − (xn + sn)) × (1 + r)−t dt

Rsys(0; a1(1 − (x1 + s1)), .., an(1 − (xn + sn)) . (7)

Reliability Deviation (Rdeviation) : This metric quantifies the deviation of the part’s re-
liability from the required minimum. The reliability of the part is defined as the probability of
surviving the warranty period Twarranty given the components’ age after repair.

Rdeviation = 100 ×
max(Rmin − Rsys(Twarranty ;a1(1−(x1+s1)),..)

Rsys(0;a1(1−(x1+s1)),..) , 0)
Rmin

. (8)

3 System reliability modeling considering stochastic depen-
dency

Accounting for stochastic dependencies in a multi-component system is crucial. To tackle the
computational challenge associated with high-dimensional problems, we employ a dimensio-
nality reduction technique alongside Nataf’s transformation to compute joint distribution effi-
ciently.
We begin by forming clusters of components based on calculated correlation from the historical
replacement of component data. We use Agglomerative Hierarchical Clustering. Each cluster is
treated as a ’super component’, with its reliability distribution constructed assuming that any
component’s failure leads to its entire cluster’s failure. We use an index similar to the Akaike
Information Criterion to determine the optimal number of components per group, aiming to
minimize this number while maximizing system reliability.
After clustering, Nataf transformation maps the joint distribution of component groups to a
standard normal space. The joint probability density function for a group of components in a
serial system, represented by the survival function Rg(t) can be expressed as follows :

Rg(t) = P (minc∈g(Xc) ≥ t) (9)
= 1 +

∑
1≤k≤ng

(−1)k
∑

1≤c1≤c2...≤ck≤ng

P (Xc1 , Xc2 , ..., Xck
≤ t)



This approach simplifies the computational process and enables system reliability evaluation
for high-dimensional problems involving multiple dependent components.

4 Industrial case study
In partnership with GE Healthcare, a leader in medical system services, this study applies the
OM optimization model to MRI machine power supplies within a CLSC. The model addresses
the criticality and costliness of medical device components by minimizing product failure rate
and unavailability. We focus on a power supply composed of 11 serially connected components,
with maintenance informed by the physical structure and disassembly times (see Figure 1 and
Table 1). Table 2 summarizes each component’s material cost and average lifetime.

FIG. 1 – System’s structure

Component C1 C2 C3 C4 C5 C6
Disassembling

time (U.T) 3 1 1.5 0.2 2 4.5

Component C7 C8 C9 C10 C11
Disassembling

time (U.T) 9 4.5 1 1 1

TAB. 1 – Components’ dismantling time

Component C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Component
cost (U.C) 22 24 6 43 140 2 34 23 6 9 8

Mul (U.T) 71k 22k 54k 44k 1.5k 16k 68k 183k 37k 58k 24k

TAB. 2 – Costs parameters

Maintenance data was collected from GEHC’s repair center, which manages a large inventory
of MRI power supplies, reflecting the challenge of tracking part lifetimes across a global sup-
ply chain. Our dataset consists of 13200 records for 7514 parts, with 3490 having multiple
repairs. A subset of 120 units with multiple repairs was used to implement the model over
a 730 U.T horizon, with the remaining data constructing the reliability functions. We used
NSGA algorithm because of the problem’s NP-hard and non-linear nature. The optimization
seeks to enhance the CLSC’s efficiency by balancing the trade-offs between maintenance costs,
environmental impact, risk, and reliability.

5 Results and analysis
This section reports the results of our opportunistic strategy on the test subset. First, we
present the performance of the clustering method described to model dependency. Then, we
present the trade-off between different objectives and their impact on decisions. Finally, we
present the opportunistic maintenance effect on parts’ reliability.

Reliability functions under dependency : To build system reliability model under depen-
dency, we used the grouping algorithm presented in Section 3. First, we determine the best
grouping strategy by maximizing the likelihood and minimizing the number of components
per group. The results are given in Table 3, where threshold and groups represent the mini-
mum correlation level selected and the formed groups, respectively ; N_super_comp and
Max_comp_group are the number of formed groups and the maximum number of compo-
nents per group. It can be seen from Table 3 that the best threshold for grouping components
is 0.6 because it maximizes the loglikelihood and minimizes the number of components per
group. It can be verified that by grouping like this, the resulting marginal distributions can
satisfy the positive definite constraint needed for applying Nataf transformation.
The system reliability is then calculated based on Eq. (9) considering the stochastic dependen-
cies and the forming clusters. Figure 2 compares the result to the empirical estimations directly



Threshold Groups N_super_comp Max_comp_group Positive definite AIC Loglikelihood
0.6 (C1,C3) 10 2 1 10571.19 -10567.19
0.1 (C1,C2,C3,C7,C10) 7 5 0 10578.31 -10568.31

[0.4,0.5] (C1,C3) ; (C7,C10) 9 2 1 10583.59 -10579.59
[0.2,0.3] (C1,C2,C3) ;(C7,C10) 8 3 0 10591.78 -10585.78
[0.7,0.9] (C1) ;(C2) ;(C3) ;(C4) ;(C5) ;(C6) ;(C7) ;(C8) ;(C9) ;(C10) ;(C11) 11 1 1 10593.28 -10593.28

0 (C1,C2,C3,C4,C7,C10) ; (C5,C8,C11) ; (C6,C9) 3 6 0 26482.69 -26470.69

TAB. 3 – Grouping components results

from data. As we can see, the computed system lifetime distribution from the proposed model
fits well with the empirical data.

FIG. 2 – Modeling failure distribution under dependency

Pareto Frontier Analysis and Decision-Making Insights : The radar charts in figure 3
portray the Pareto optimal solutions derived from our multi-objective optimization framework
for one spare part repair. Each axis on the radar chart quantifies an objective : maintenance
costs (Cmaintenance), environmental impacts (Cenvironment), risk levels (Crisk), net benefits, the
number of total replacements, and regulatory compliance penalties (Rpenalty).

FIG. 3 – Pareto frontier for study case FIG. 4 – Impact of OM strategy on reliability
at Twarranty

It illustrates the balancing act between competing objectives in opportunistic maintenance,
with certain solutions favoring financial gain at the potential cost of increased risk, while more
balanced profiles suggest a strategic compromise. The model offers valuable managerial in-
sights, advocating for a multifaceted maintenance approach that accommodates profit goals,
environmental sustainability, and risk aversion. It underlines the importance of risk manage-
ment and regulatory compliance, guiding decision-makers toward a comprehensive strategy
harmonizing with a wide range of operational goals. It also highlights the complexity of main-
tenance strategy decisions, providing a tool for identifying an optimized path that integrates
diverse priorities.
Impact on the reliability of the repaired spare parts : Figure 4 compare the reliability
at the end of the warranty period Twarranty.Proactive maintenance strategy choices directly
impact component reliability as warranty periods end, with the optimal approach depending
on management’s risk appetite. A benefit-maximizing strategy might meet minimum quality
constraints but carries the risk of reduced reliability post-warranty. On the other hand, a
risk-minimizing approach promises maximum reliability at the expense of lesser benefits. A
balanced strategy strikes a middle ground, offering reasonable reliability and benefits, and is



ideal for managers with intermediate risk tolerance. Decision-makers must weigh the long-term
effects of their maintenance strategy on system reliability to ensure sustained performance and
avoid increased costs from post-warranty failures.

6 Conclusions and perspectives
The study delivers a multi-objective optimization framework for opportunistic maintenance in
Closed-Loop Supply Chains, particularly in medical systems. Utilizing NSGA-III, the frame-
work balances various objectives, including maintenance costs and environmental impact, with
real-world validation from GE Healthcare data. The Pareto frontiers generated provide a visual
guide for decision-makers to tailor maintenance strategies to their operational goals and risk
profiles. The research underscores the long-term reliability implications of maintenance deci-
sions made at the end of warranty periods, offering a critical evaluation between short-term
benefits and long-term system robustness. This work sets a new standard for maintenance
strategy research and opens avenues for further exploration in various industrial contexts.
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