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1 Introduction
The p-median problem (pMP ) is one of the fundamental problems in Location Science [18]. In
the (pMP ), p sites have to be chosen from the set of candidate sites without considering set-up
costs. The allocation costs are usually equal to the distance or travel time between clients
and sites. The (pMP ) is an NP-hard problem [17] and leads to applications where the sites
may correspond to warehouses, plants, or shelters for example. This problem also occurs in
the contexts of emergency logistics and humanitarian relief. A well-known clustering problem
called k-medoids problem is also a special case of the (pMP ) in which the set of clients and
sites are identical. In this problem, sub-groups of objects, variables, persons, etc. are identified
according to defined criteria of proximity or similarity.

A great interest in solving large location problems has led to the development of various
heuristics and meta-heuristics in the literature. However, the exact resolution of large instances
remains a challenge [19]. Some location problems have recently been efficiently solved using
the Benders decomposition method (see e.g., [6, 10]). In this work, we explore a Benders
decomposition of a recent formulation of the (pMP ). We prove that the Benders cuts can be
separated quickly. We implement a branch-and-Benders-cut approach that outperforms by an
order of magnitude the state-of-the-art method of [11] on more than 200 benchmark instances
with up to 238025 clients and sites. Our work is published in [8].

2 The p-median problem (pMP)
The p-median is formally defined as follows. Given a set of N clients, a set of M potential
centers to open, and their corresponding index sets N = {1, ..., N} and M = {1, ..., M}, let
dij be the distance between client i ∈ N and site j ∈ M and let p ∈ N be the number of sites
to open. The objective is to find a set S of p sites such that the sum of the distances between
each client and its closest site in S is minimized. The (pMP ) was introduced in [12] where the
problem was defined on a graph such that a client can only be allocated to an open neighbor
site. Since then, exact and approximation methods have been developed to solve the problem,
as well as many of variants and extensions. We refer to [19] for more details and references.

There are three main MILP formulations for this problem. The classical one (F1) introduced
in [24] that considers a binary variable yj for each site j ∈ M that takes value 1 if the site is
open, and 0 otherwise; and a binary variable xij that takes value 1 if client i ∈ N is allocated
to site j ∈ M and 0 otherwise. An alternative formulation (F2) was proposed by [7] which
for each client i ∈ N orders all its distinct distances to the sites. More formally, let Ki be the
number of different distances from i to any site. Let D1

i < D2
i < ... < DKi

i be these distances
sorted, and let Ki be the corresponding index set {1, ..., Ki}. Formulation (F2) uses the same
y variables as in (F1) and introduces new binary variables z. For any client i ∈ N and k ∈ Ki,
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i is equal to 0 if there is an open site at distance at most Dk

i from client i, and 1 otherwise. As
Ki ≤ M , it follows that (F2) has at most as many variables and constraints as (F1). Finally,
[9] introduced formulation (F3) based on (F2). Given that, by definition, zk−1

i is equal to 0
implies that zk

i is also equal to 0, (F3) replaces the following Constraints (1) of (F2):
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yj ≥ 1 i ∈ N , k ∈ Ki (1)

by Constraints (4) and (5). Thus, the coefficients matrix of the following (F3) is more sparse:
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Since (F3) is the most efficient formulation, we have studied a Benders decomposition based
on this formulation. The main heuristics to solver the (pMP ) are presented in the following
surveys: [3, 14, 20, 21]. To the best of our knowledge, the state-of-the-art exact method
is the Zebra algorithm [11], which considers a branch-and-cut-and-price algorithm based on
formulation (F2). It relies on the fact that the z variables satisfy zk

i ≥ zk+1
i in any optimal

solution of (F2) or its LP relaxation. Therefore, it is enough to solve these problems on a
reduced subset of variables z, which is iteratively enlarged until an optimal solution is obtained.
Zebra performs well on instances with up to 85900 nodes and large values of p.

3 Benders decomposition for the (pMP)
The Benders decomposition splits the optimization problem into a master problem and one or
several sub-problems. The master problem and the sub-problems are solved iteratively and at
each iteration, each sub-problem may add a cut to the master problem.

Based on (F3), our master problem contains the location variables y and our sub-problem
contains the allocation variables z. The master problem also contains a variable θi for each
client i ∈ N which represents the allocation distances of the clients. Given a feasible solution
of the master problem (a set of p sites), the sub-problem can be split into N sub-problems,
each computing the allocation distance of one client and potentially leading to the addition of
a cut. We show that Benders cuts can be quickly separated using the following definition.

Definition 1 Given a solution ȳ of the master problem from (F3) or of its LP-relaxation, we
define k̃i for each i ∈ N as follows:

k̃i =


0 if

∑
j:dij=D1

i

ȳj ≥ 1

max{k ∈ Ki :
∑

j:dij≤Dk
i

ȳj < 1} otherwise

Index k̃i is equal to 0 if client i is covered at distance D1
i . Otherwise it is the largest distance

index for which customer i is not yet covered in solution ȳ. Therefore, if ȳ is binary, then the
allocation distance of client i for this solution is Dk̃i+1

i . This definition allows us to state the
following theorem.



Theorem 1 Given a solution ȳ of the master problem from (F3) of its LP-relaxation and the
corresponding indices k̃i, the corresponding Benders cuts for each i ∈ N can be written as
follows: 

θi ≥ D1
i if k̃i = 0

θi ≥ Dk̃i+1
i −

∑
j:dij≤D

k̃i
i

(Dk̃i+1
i − dij)yj otherwise

This theorem ensures that there is a finite number of Benders cuts. This enables us to define
the following new compact formulation (F4) for the p-median problem.
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Constraints (8) correspond to the lower bound of each allocation distance given by the
smallest distance value from each client to its nearest site. Constraints (9) ensure that each
variable θi is larger than Dk+1

i unless a site j is opened at a distance not more than Dk
i from

client i. In this case the allocation distance of client i is at most dij .
The efficiency of our decomposition comes from an O(M) algorithm to separate the Benders

cuts along with several implementation improvements in a two-phase resolution. In Phase 1,
the integrity constraints are relaxed, which allows many cuts to be generated quickly. In order
to enhance the performance of this phase, we provide a good candidate solution to the initial
master problem which significantly reduces the number of iterations. To that end, we use the
state-of-art PopStar heuristic [23]. Additionally, we use a rounding heuristic at each iteration
to try to improve the upper bound of the problem. At the end of Phase 1, most of the generated
Benders cuts are not saturated by the current fractional solution. We remove most of them
to reduce the number of constraints in the master problem. Phase 1 provides a lower and an
upper bound of the problem, which can be used to perform an analysis of the reduced costs of
the last fractional solution to reduce the number of variables. In Phase 2, we add the integrity
constraints and the obtained master problem is solved through a branch-and-Benders-cut. At
each node which provides an integer solution, we solve the sub-problems in order to generate
Benders cuts. The resolution of the sub-problems is performed through callbacks which is a
feature provided by mixed integer programming solvers.

4 Computational study
Our study was carried out on an Intel XEON W-2145 processor 3,7 GHz, with 16 threads, but
only 1 was used, and 256 GB of RAM. IBM ILOG CPLEX 20.1 was used as the branch-and-
cut framework. The absolute tolerance to the best integer objective (EpGap) has been set to
10−10, and the absolute MIP gap (EpAGap) to 0.9999.

We study the same instances used for the state-of-the-art method Zebra that is the bench-
mark instances from OR-Library [4] and TSP-Library [22]. In all these instances, the sites are
at the same location as the clients and thus N = M . The set of OR-Library contains instances
with 100 to 900 clients, and the value of p is between 5 and 500. We select a set from the
TSP-Library having between 1304 and 238025 clients. Another set of symmetric instances that
satisfy triangle inequality are the BIRCH instances, usually solved by heuristics algorithms (see



e.g [1, 13, 16]). We consider two types of instances with sizes from 10000 to 20000 points for
the first one and from 25000 to 89600 points for the second one. We compare performances of
our algorithm to that of an aggregation heuristic [1] (denoted by AvellaHeu) for the first type,
and an hybrid heuristic combining aggregation and variable neighborhood search [15] (denoted
by IrawanHeu) for the second type. We also consider the RW instances originally proposed
by [23] with the PopStar heuristic. They correspond to completely random distance matrices.
The distance between client i and site j is not necessarily equal to the distance between site
j and client i. Four different values of N = M are considered: 100, 250, 500, and 1000. We
also consider the ODM instances which were introduced by [5] and are solved in [2] with a
branch-and-cut-and-price algorithm (denoted by AvellaB&C). These instances correspond to
the optimal diversity management problem in which certain allocations between clients and
sites are not allowed. We consider the hardest instances in which N = 3773.

To summarize all our results, Table 4 presents for each dataset the number of instances
considered, the average cpu time (Time) computed on the instances solved to optimality by
both approaches, the percentage of optimally solved instances (Opt), and the average final
optimality gap (Gap). The grey values indicate that the solution times were not obtained
on the same computer, unlike Zebra and PopStar. We can see that our solution times are
significantly faster than the two other exact approaches and are competitive with the ones of
the heuristics. Moreover, the number of instances that we solve to optimality and our average
gaps are significantly better.

Dataset # instances Algorithm Time Opt Gap

TSP 149 Zebra 2408s 68% 0.28%
Our method 381s 91% 0.03%

BIRCH dsx 24 AvellaHeu* 159s 79% 0.01%
Our method 95s 100% 0%

BIRCH dsn 24 IrawanHeu* 1965s 8% 0.32%
Our method 766s 100% 0%

RW 27 PopStar* 6s 48% 9.47%
Our method 15s 59% 6.90%

ODM 10 AvellaB&C 147248s 30% 1.94%
Our method 560s 100% 0%

TAB. 1: Summary of all our results. * means heuristic method

We highlight that several instances are solved for the first time having up to 89600 and 238025
clients and sites from the BIRCH and TSP libraries, respectively. For the RW instances, it
was possible for the first time to solve instances with up to 1000 clients with a large value
of p. For ODM instances with 3773 clients, previously unsolved instances were solved within
10 hours. To give more detailed results, Table 2 presents the results obtained on the largest
TSP instances. In which column OPT/BKN contains the optimal value of the instance in
bold if it is known or the best-known solution value obtained given the time limit, otherwise.
If the value is underlined, it means that it is the first time the instance is solved to optimality
or that the best-known value was improved. We observe that we are significantly faster than
Zebra. Moreover, when both methods reach the time limit, we are able to prove significantly
smaller gaps.

5 Conclusions
We define a Benders decomposition based on the most efficient formulation of the p-median
problem. The efficiency of the proposed decomposition comes from a fast algorithm for the sub-
problems in conjunction with additional improvements implemented in a two-phase algorithm.
In the first phase, the integrity constraints are relaxed and in the second phase, the problem
is solved in an efficient branch-and-cut approach.



Our approach outperforms other state-of-the-art methods on five data sets from the litera-
ture. Our approach was able to improve the best-know solution of 91% of the instances which
had not previously been solved to optimality. Finally we found an optimal solution for 81%
of them. One of the perspectives of this research is to exploit these results on other families
of location problems. It is also expected to use other branching strategies that could allow a
greater efficiency during the development of the branch-and-cut algorithm.

INSTANCE PHASE 1 PHASE 1 + 2 Zebra

name N = M p
OPT/
BKN

LB1 UB1 t1[s] gap iter nodes ttot[s] gap t[s]

ch71009 71009 10000 4274662 4273680 4424131 6326 0,006% 36 18585 TL ∞ ♦
20000 2377760 2377409 2419539 681 0% 40 474 3581 ∞ ♦
30000 1464151 1464015 1473517 431 0% 27 0 819 ∞ ♦
40000 879336 879272 881997 220 0% 17 0 465 ∞ ♦
50000 463553 463544 463904 133 0% 24 0 258 0% 653
60000 167565 167558 167789 49 0% 31 0 135 0% 331

pla85900 85900 10000 166853134 166627292 182428500 2841 0,12% 30 2113 TL ∞ ♦
20000 109007210 107246411 120645337 3975 1,58% 27 618 TL ∞ ♦
30000 86944862 86944715 87547287 1411 0,0002% 84 28033 TL ∞ ♦
40000 69944715 69944715 69965668 1006 0% 12 0 1006 ∞ ♦
50000 52944715 52944715 52945623 921 0% 12 0 921 ∞ ♦
60000 35944715 35944715 35945105 858 0% 11 0 858 ∞ ♦
70000 18977475 18977475 18977475 73 0% 13 0 73 0% 122
80000 4512752 4512752 4512752 12 0% 20 0 13 0% 97

usa115475 115474 20000 5287343 5286659 5383798 3366 0,001% 36 11102 TL ∞ ♦
30000 3815620 3815143 3861590 1494 0% 41 589 11581 ∞ ♦
40000 2876909 2876603 2904492 1353 0% 32 459 4431 ∞ ♦
50000 2189144 2188903 2200969 1122 0% 28 480 3189 ∞ ♦
60000 1651400 1651234 1657118 795 0% 25 0 1588 ∞ ♦
70000 1214299 1214177 1217251 612 0% 17 0 1045 ∞ ♦
80000 851481 851422 852851 435 0% 24 0 788 ∞ ♦
90000 548097 548076 548560 270 0% 18 0 544 ∞ ♦

ara238025 238025 10000 1354335 1345698 1446100 5197 0,64% 19 0 TL ∞ ♦
20000 857553 857453 878372 5582 0,004% 42 696 TL ∞ ♦
30000 630969 630872 643171 5123 0% 33 663 33687 ∞ ♦
40000 494842 494804 498378 4135 0% 18 0 10028 ∞ ♦
50000 401835 401795 404218 2675 0% 19 0 8327 ∞ ♦
60000 334279 334236 335807 2969 0% 17 0 7240 ∞ ♦
70000 283627 283592 286065 3058 0% 28 509 19298 ∞ ♦
80000 244233 243936 248742 2578 0% 36 378 14615 ∞ ♦
90000 214233 213936 219673 1548 0% 27 507 28391 ∞ ♦
100000 184233 184069 188556 1973 0% 44 613 18473 ∞ ♦
150000 88025 88025 88334 1532 0% 27 0 6057 ∞ ♦
200000 38025 38025 38025 319 0% 11 0 319 ∞ ♦

TAB. 2: Results on the largest TSP instances for our method and Zebra on our computer. TL=36000 seconds.
♦ means that the computer ran out of memory.
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