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1 Introduction
One of the main challenges of preference modeling in the context of multicriteria (or multi-
attribute) decision making is to construct simple and explainable decision models while keep-
ing sufficient flexibility to accurately model human preferences and decision behaviors. The
presence of possible interactions among criteria is a source of complexity for preference mod-
eling because it prevents representing preferences by simple linear models such as weighted
arithmetic means. More sophisticated weighted evaluation models including non-linear terms
measuring the joint benefit or penalty attached to some groups of criteria are needed. For
instance, interactions may be represented by product terms as in the multilinear utility model
[7], or by minimum operations as in the Choquet integral [11].

However, allowing the possibility of interactions in a decision model is a source of complexity
in preference modeling and preference learning due to the combinatorial nature of these inter-
actions. In an aggregation model involving n criteria, interactions may appear in any of the
2n − n − 1 subsets of criteria including more than one element. In order to preserve scalability
in learning the interactions, a standard approach is to reduce the combinatorial aspect of the
problem by allowing only a limited number of them. For example, many contributions only
consider pairwise interactions of criteria. More generally, a common approach consists of limit-
ing interactions to subsets of size k for some k significantly smaller than n. However, this prior
restriction eliminates simple and natural preference systems that require larger interactions.
For example, including a conjunctive term such as min{x1, . . . , xn} in the aggregation function
F (x1, . . . , xn) may be natural to promote balanced solutions. Such an interaction involves the
entire set of criteria and cannot be simply approximated by interactions on smaller sets.

In this paper, we introduce another approach where no prior restriction on the possible
interaction groups is made. The useful groups will emerge from preference data with the aim
of constructing a model as simple as possible, that fits well the preference examples. In this
perspective, we consider a large class of decision models defined by weighted sums of non-linear
factors (interaction terms) wherein we look for a sparse instance that well fits preference data.

2 Evaluation Models with Interacting Criteria
We adopt the standard setting and notations for multiattribute or multicriteria decision mak-
ing. Let N = {1, . . . , n} be the set of viewpoints to be considered in a decision problem. Every
alternative x is described by a vector (c1(x), . . . , cn(x)) of consequences where ci(x) represents
the value of x with respect to the ith viewpoint. Let Xi denote the set of possible consequences
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on the ith viewpoint for all i ∈ N and X = X1 × . . . × Xn the set of all possible consequence
vectors. One standard approach in preference modeling consists of representing the preference
relation ≿ of the decision maker (DM) over X by a decomposable function u on X of the form
u(x) = F (u1(c1(x)), . . . , un(cn(x))) where ui : Xi → [0, 1], i ∈ N are marginal utility functions
representing the attractiveness of consequences ci(x) for the DM and F : [0, 1]n → [0, 1] is an
aggregation function non-decreasing in each argument. Function u is said to represent ≿ when
x ≿ y if and only if u(x) ≥ u(y). Let us recall two standard examples of function u, widely
used to represent preferences in multicriteria decision problems involving interacting criteria:
Example 1 The multilinear utility model [7] defined by:

MLv(x) =
∑

S⊆N

v(S)
∏
i∈S

ui(ci(x))
∏
i/∈S

(1 − ui(ci(x))) (1)

Function v : 2N → [0, 1] is called a capacity, assigns a weight to any subset of viewpoints.
One can assume that v is normalized (i.e., v(∅) = 0 and v(N) = 1) and monotonic w.r.t. set
inclusion (v(A) ≤ v(B) for all subsets A, B ⊆ N) which guarantees the monotonicity of u w.r.t.
weak Pareto dominance. Another well-known capacity-based decision model is the following:

Example 2 The discrete Choquet integral [11] defined by:

Cv(x) =
n∑

i=1

[
v(X(i)) − v(X(i+1))

]
u(i)(c(i)(x)) (2)

where (.) is any permutation of N such that u(i)(c(i)(x)) ≤ u(i+1)(c(i+1)(x)) and X(i) =
{(i), . . . , (n)}, i ∈ N with x(0) = 0 and X(n+1) = ∅. For instance, if n = 3 and x is such
that u2(c2(x)) ≤ u1(c1(x)) ≤ u3(c3(x)), then Cv(x) = [v(1, 2, 3) − v(1, 3)]u2(c2(x)) + [v(1, 3) −
v(3)]u1(c1(x)) + v(3)u3(c3(x)).

The capacity is a preference parameter that must be elicited by questioning the DM or learned
from preference examples. The other preference parameters used in these models are marginal
utility functions ui, i ∈ N . In the case of the multilinear model, marginal utilities can be elicited
from comparisons of preference intensities under weak difference independence, an axiom usu-
ally assumed to justify the multilinear model in multicriteria/multiattribute decision making
[9, Chap. 6]. For the Choquet integral, the utility functions can be obtained using standard
sequences of tradeoff queries [22, 13], or constructed with the Macbeth method [10]. From now
on, we assume that the marginal utilities have been elicitated beforehand. Then, any alterna-
tive x is described by the utility vector x = (x1, . . . , xn) ∈ [0, 1]n where xi = ui(ci(x)), i ∈ N ,
and we focus on the learning of capacity v from preference examples.

Related Work As far as the identification of the capacity used in a decision model is con-
cerned, several approaches based on the least squares criterion or variance minimization of the
model under preference constraints have been proposed in the field of multicriteria analysis for
the Choquet integral [10]. In the field of machine learning different learning algorithms have
been proposed, e.g., Choquistic regression [19], support vector machines (SVM) with Choquet
kernel [18], and ridge regression for Choquet regression [14]. Moreover a neural network was
recently proposed to learn a hierarchical Choquet model [4]. Some recent contributions using
regression also exist for the multilinear model [16].

Very often, a prior complexity reduction is obtained by considering models with interaction
terms involving at most k criteria (e.g., k-additivity assumption [8]), k = 2 being the most
common choice [10, 4]. A less restrictive attempt to reduce models complexity is to derive a
sparse capacity representation from preference data using the L1-norm penalty [1, 16] where
the regularization was applied either to the capacity, or to the interaction index [10]. Recently,
after observing that Möbius representations often lead to more compact preference models, we
have proposed an approach based on linear programming to learn a sparse Möbius transform
of the capacity in the Choquet integral [12]. Following this line, we present a more efficient
preference learning approach which, moreover, applies to a wider class of models:



A Möbius-based general model including interactions For any capacity v, its Möbius
transform mv is another set function defined as follows: mv(S) =

∑
T ⊆S(−1)|S\T |v(T ), S ⊆ N .

Note that capacity v is fully characterized by mv since by construction v(S) =
∑

T ⊆S mv(T ), S ⊆
N . Values mv(S), S ⊆ N are called Möbius masses. Both MLv(x) and Cv(x) can be directly
defined from Möbius masses as follows [15, 5]:

MLv(x) =
∑

S⊆N mv(S)
∏

i∈S xi, Cv(x) =
∑

S⊆N mv(S) mini∈S{xi}

In order to factorize and generalize the above equations, we now consider a general model F :

F (x) =
∑

S⊆N mSϕS(xS) (3)

where mS are Möbius masses and ϕ : Rn → R2n maps x into a nonlinear feature space: ϕ(x) =
(ϕS(xS))S⊆N . Note that F (x) = ⟨m, ϕ(x)⟩ where m = (mS)S⊆N and ϕ(x) are indexed on the
subsets S ⊆ N taken in the lexicographic order. Our goal is to find a sparse instance of F (i.e.,
when the vector of Möbius masses includes many zeros) that well fits the available preference
data. Instead of assuming that Möbius masses are null on sets larger that k (k-additivity
assumption), we shall reveal the sparsity pattern from preference analysis to benefit from
the full descriptive potential of F . The counterpart is that we have to handle an exponential
number of Möbius masses which raises computational issues. Our approach tackles this learning
problem using an optimization method based on iteratively re-weighted least squares and
dualization as explained in the next section.

3 A Dual IRLS for Sparse Preference Learning
Our objective is to learn a sparse representation of m based on a training set of preferences
statements {(xi, yi) ∈ X 2 : xi ≻ yi, i ∈ P} and possibly of indifference statements {(xi, yi) ∈
X 2 : xi ∼ yi, i ∈ I}. A well-known workhorse for learning sparse models is the L1-norm
penalty. This is indeed a sparse-inducing penalty, in the sense that it promotes solutions
with few non-null coefficients. A major application of this regularization is the LASSO linear
regression [21]. Here we want to minimize both the error on the preference examples and the
L1 norm of the Möbius vector. Thus, the learning problem is formulated as follows:

(P) min
∑

i∈P ϵi +
∑

i∈I(ϵ−
i + ϵ+

i ) + λ
∑2n

j=n+1 |mj |
⟨m, ϕ(xi)⟩ − ⟨m, ϕ(yi)⟩ + ϵi ≥ δ, i ∈ P (4)
⟨m, ϕ(xi)⟩ − ⟨m, ϕ(yi)⟩ + ϵ+

i − ϵ−
i = 0, i ∈ I (5)

⟨m, 1⟩ = 1 (6)
ϵi ≥ 0, i ∈ P, ϵ+

i , ϵ−
i ≥ 0, i ∈ I (7)

where variable mj is the jth component of vector m. The hyper-parameter λ > 0 controls
the level of regularization and δ is a strictly positive discrimination threshold used to separate
preference from indifference situations. Note that the L1-penalty is only applied to the terms
involving at least two criteria so as to minimize interactions. Variable ϵi models the positive
error made on the preference example xi ≻ yi, while ϵ+

i − ϵ−
i models the signed error made on

the indifference xi ∼ yi. The constraint 6 guarantees v(N) = 1.
Problem P can be solved by linear programming using standard linearizations of the L1-

norm. However, the obtained linear program still drags an exponential number of variables
(2n(3 − 2n) + p + 2q) (where p = |P |, and q = |I|) and thus is hardly solvable for more than
a dozen of criteria. For the sake of scalability, we propose to solve P by solving a sequence of
sub-problems Pk that admit an efficient dual formulation. More precisely, we use an iteratively
reweighted least square (IRLS) algorithm [6, 3] that consists in approximating the solution of
a L1-penalized problem with a sequence of least squares problems. Sparsity is recovered by
increasingly penalizing non-significant coefficients with an L2 regularization. The interest of



this method is that a least squares problem is easy to solve in general. In our case, we will
show that the least square problem Pk admits a compact dual form whose size is no longer
exponential in n, but linear in p + qth, the number of preference examples.

First, using the variational formulation of the L1-norm [2], i.e., |x| = 1
2 minz≥0

x2

z + z, we
establish Proposition 1 providing an IRLS algorithm that approximatively solves P . The
proof relies on [3] that gives conditions under which an optimization problem can be solved by
alternating minimization (here on x and z) and insights on how it leads to IRLS sequences.

Proposition 1 Let η > 0 be a smoothing parameter. Consider the sequence m(k) initialized
with m(0) = 1 such that:

m(k+1) ∈
∑
i∈P

ϵi +
∑
i∈I

(ϵ−
i + ϵ+

i ) +
∑
j>n

λm2
j√

m
(k)
j

2 + η2
s.t. (4), (5), (6), (7)

Then we have: limk→∞ J(m(k+1)) − J∗ ≤ (2n − n)η where J is the objective function of P and
J∗ its optimum. Pk refers to the problem solved at each iteration.

Proposition 1 ensures that solving problems Pk for a sufficient number of iterations and a
sufficiently small η provides a near-optimal solution to P . The special interest of the IRLS
method in our case is revealed when considering the dual formulation Dk of each problem
Pk. Indeed, as in kernel-based machine learning methods such as support vector machines
[17, 18], one can use Lagrangian duality to obtain a more compact mathematical programming
formulation. More precisely, since Pk is a convex problem with linear constraints, strong
duality holds, and solving Pk or Dk is equivalent. The efficiency of Dk is detailed below:

Proposition 2 Problem Dk has p + q + 1 variables and 2(p + q) constraints, and is defined by:

(Dk) max
Γ=(α,β,µ)∈Rp+q+1

− 1
4λ

Γ⊺Q⊺Dk
−1QΓ + Γ⊺L s.t. 0 ≤ α ≤ 1, −1 ≤ β ≤ 1

where Dk is a square diagonal matrix of size 2n whose diagonal contains the current weighting
coefficients 1/

√
m

(k)
j

2 + η2 (and 0 for the singletons). Also, Q (respectively L) is a data de-
pendent matrix of size 2n × (p + q + 1) (respectively p + q + 1) such that Q = (δP, δI, 1), and
L = (δ, 0, 1) where δP = (ϕ(xi) − ϕ(yi))i∈P and δI = (ϕ(xi) − ϕ(yi))i∈I are matrices of size
2n × p and 2n × q respectively and where δ = δ(1, . . . , 1) ∈ Rp and 0 = (0, . . . , 0) ∈ Rq.

Towards higher dimensions. For a high number of criteria n, the computation of Q⊺Dk
−1Q

raises an issue since Q and Dk have 2n columns. However, for k = 1, Dk is the identity ma-
trix and the matrix Q⊺Dk

−1Q = Q⊺Q can be computed in polynomial time. In kernel-based
machine learning, this property is referred to as the ‘kernel trick’ [17] and refers to direct
computations of inner products of the form ⟨ϕ(x), ϕ(x′)⟩ that do not require the calculation of
vectors ϕ(x) (of size 2n here). A computation in O(n2) is provided for the Choquet integral
(ϕS(xS) = min(xS)) in [20]. We also provide a computation in O(n) of the multilinear kernel:

Proposition 3 (See also [17]) When ϕS(xS) =
∏

i∈S xi, ⟨ϕ(x), ϕ(x′)⟩ can be computed in
O(n) ,i.e., ⟨ϕ(x), ϕ(x′)⟩ =

∑
S⊆N

∏
i∈S xi

∏
i∈S x′

i =
∏n

i=1(xix
′
i + 1) − 1.

Using these polynomial computations, we proceed to a kernelized computation of Q⊺Q at the
first iteration of the IRLS sequence. This provides a way to perform dimension reduction since
non-significant coefficients obtained after this first iteration can be discarded before going on.

4 Numerical Tests
In this section we present the results of numerical tests performed on synthetic preference
data. We test the ability of our algorithm (denoted D-IRLS for dual IRLS) to learn a Choquet



FIG. 1: Mean training time (left) and test errors (right) for D-IRLS and ES with MLv and Cv.

integral for a growing number of criteria. We compare it to an exact solving of P with linear
programming (denoted ES). Preference data are generated through randomly drawn sparse
Möbius vectors m (verifying monotonicity constraints) and utilities vectors x, y are uniformly
drawn within [0, 1]n. The overall values u(x) and u(y) are computed and perturbated with a
Gaussian noise (σ = 0.03) before being classified as preference or indifference training examples.
We set the size of the training sets to |P | + |I| = 500 and of the test sets to |P | = 1000. The
regularization parameter λ is set to λ = 1. All tests are conducted on a 2.8 GHz Intel Core i7
processor with 16GB RAM and we used the mathematical programming Gurobi solver (version
9.1.2). For the D-IRLS method, the smoothing parameter is set to η = 10−50 and the algorithm
terminates when ∥m(k+1) −m(k)∥2 ≤ 10−3. Also, coefficients with absolute values smaller than
10−5 are discarded at each iteration.

Training time and generalizing performance. In the first experiment, we generate 10
training/test sets and evaluate the average training time of both algorithms as well as the
generalizing performances of the learned models (average preference inversion on a test set).
In order to evaluate the scalability of our method we vary the number of criteria from n = 7 to
n = 22. Figure 1 shows the results for the learning of the Choquet integral. We observe that
ES does not provide any solution after n = 17. However D-IRLS allows more than 4 millions
of coefficients (n = 22) to be learned in less than 400 seconds. In contrast, we observe that
the generalizing performances of the learned decision models obtained with D-IRLS and ES
are comparable. Since the number of training preference examples is constant, the test error
globally increases with the number of criteria for both methods.

Comparison with k-additive models. We compare D-IRLS to ES with k-additivity con-
straints for k = 2 (2-add) and k = 3 (3-add), still under the same experimental setting. The
advantage of using sparse models with possible large interactions instead of k-additive models
is clear: for n = 16, D-IRLS has an average test error of 6 %, against 17% and 23% for 2-add
and 3-add respectively. In addition, for this number of criteria, 2-add and 3-add are two times
slower than D-IRLS (on average about 345 sec. for 2-add and 3-add and 187 sec. for D-IRLS).

5 Conclusion
We have addressed the problem of preference learning with interacting criteria by considering a
large class of capacity-based decision models including the multilinear utility and the Choquet
integral, known for their expressiveness. We proposed a unified approach to learn the models
of this class based on the search of sparse Möbius representations of capacities, leading to
simple models with sparse interaction patterns. This approach applies to instances possibly
involving more than 20 criteria and allows the most significant interaction factors to be iden-
tified within millions of possibilities. This represents a significant improvement compared to



previous approaches limited to a dozen of criteria. Moreover, the sparsity pattern is revealed
from preference examples instead of resulting from a prior cardinality-based simplification of
interactions, which greatly enhances the descriptive possibilities. A natural continuation of
this work would be to extend the approach to learn interaction functions ϕS from preference
data (model selection problem).
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