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1 Introduction and motivation
In supply chain management, the storage of goods in warehouses acts as a key component
of the system performances [2]. The order picking activity (i.e., the action of retrieving the
products from their storage locations) is largely considered the most resource-intensive activity
in warehousing operations. According to [4], manual picker-to-parts warehouses, in which a
human operator walks through the shelves to collect the products, were still largely dominant
in 2007 and accounted for more than 80% of all warehouses in Western Europe. In such
warehouses, the order picking process alone accounts for 50-75% of the total operating cost.

Three main decision problems impact the operational efficiency of order picking systems:
the Storage Location Assignment Problem (SLAP), which determines an efficient assignment
of Stock Keeping Units (SKUs) to storage locations, the Order Batching Problem (OBP),
which groups customer orders into batches retrieved by single routes, and the Picker Routing
Problem (PRP), which consists in finding the most efficient path in the warehouse to pick a
given set of products from their locations. The SLAP and the PRP are strongly linked, as the
PRP determines the picking routes once the product locations are known, and the quality of
a SLAP solution is assessed via the computation of the routes followed by the pickers.

The SLAP, OBP and PRP have been studied extensively in the literature [4]. Most of the
time, these problems are solved independently, or sequentially. Recent studies have, however,
highlighted the benefits of making assignment, storage, batching and routing decisions in an
integrated way in warehousing logistics [8]. The integrated optimization of the OBP and
PRP is currently an active research topic [9]. The integration of the SLAP and the PRP
remains marginal, as the SLAP is usually considered a tactical problem, whereas the PRP is
viewed as an operational problem. However, the paradigm shift in e-commerce warehouses
increases the demand variability and often requires a high level of responsiveness to ensure
customer satisfaction. This translates into shorter lead times for processing and delivering
incoming orders [2]. To face these challenges, a common strategy is to divide the storage area
into two zones: the reserve area where products are stacked in high bays, and the smaller
forward picking area where products are stored in easily reachable racks for pickers. Although
the storage decisions in the reserve area remain tactical, the current trend in e-commerce
warehouses is to consider them as operational in the picking area. Indeed, here the inventory
quantities are small, and the picking is organized in waves, with the replenishment of depleted
products generally occurring several times per day [3].
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While a complete reoptimization of the storage plan at the operational level may seem unre-
alistic, the storage-location assignment decisions for replenished items are made several times
per day, with complete information on the incoming demand for the upcoming cycles. This
allows the explicit consideration of picker routing decisions within the problem. This dynamic
storage replenishment is inspired by real-world applications of e-commerce warehouses, e.g., in
Germany [10] and China [3]. Other applications involving storage decisions at an operational
level include the partial reassignment of already stored items, that can happen on a daily basis
in modern real-world warehouses [5].

In this context of the forward picking area, three decisions are taken before each picking
cycle: (1) where to store the SKUs with insufficient inventory to meet the incoming demand
(storage), (2) how to group customer orders into consolidated batches retrieved in a single route
(batching) and (3) how to route the pickers (routing). Consequently, different alternatives may
be considered: (a) Solve the three decision problems sequentially. (b) First, consider storage
with no information on the batches. Then, jointly optimize batching and routing with perfect
information on the SKU locations. (c) First, consider batching with incomplete information
on the SKU locations. Then, once all batches are known, jointly optimize storage and routing
with perfect information on the SKUs retrieved by each route. (d) Jointly optimize storage
location, batching, and routing.

As already mentioned, the first option has been proved to lead to solutions of poor quality
and is therefore discarded. In the second option, no information on the batching decisions is
available to the decision-maker when deciding storage assignment, whereas in the third case,
batching is determined with partial, but still rather complete information on the storage, as
only a portion of the SKUs are repleted in each replenishment cycle. Finally, it is clear that a
complete integration of the three problems would lead to the best results. However, we note
that this integrated approach poses significant challenges and is left for future research studies.

In this paper, we assume that batching decisions are made beforehand, and we focus on the
joint optimization of the storage and picker routing decisions within the forward picking area,
where both decisions may be taken with detailed knowledge of the incoming demand. It is
important to note that the orders we use as input data do not correspond to individual customer
orders, but to consolidated batches of orders, each retrieved by a single route. The resulting
problem, coined the Storage Location Assignment and Picker Routing Problem (SLAPRP), has
been recently introduced in the literature and has been proven NP-hard in the strong sense [1].

2 Problem definition

Storage nodes and locations. We assume that all picker routes start and end at the same
location v0, called the drop-off point, and that a picker can indifferently pick from the right and
left shelves when crossing an aisle. We call storage node an elementary storage space that can
hold at most one SKU. We note V the set of storage nodes, and V0 = V ∪{v0}. We call storage



location a set of storage nodes that are equivalent in terms of distance from the other storage
nodes. For example, in Figure 1, the storage nodes v1

l and v2
l are part of the same storage

location l (represented by the blue dot in the middle). We note L the set of storage locations,
V(l) the set of storage nodes that are part of location l ∈ L, and Kl = | V(l) | its capacity.
Note that L forms a partition of V , so we can index the set as V =

⋃
l∈L{v1

l , v2
l , . . . , vKl

l }. For
simplicity we can use node (resp. location) instead of storage node (resp. storage location).

Graph representation. The layout of the warehouse can be modeled with a directed graph
G = (V0, E) where E = {(v0, v1

l ) : l ∈ L} ∪ {(vi
l , v0) : l ∈ L, i = 1, . . . , Kl} ∪ {(vi

l , v1
l′) : l, l′ ∈

L, i = 1, . . . , Kl} ∪ {(vi
l , vi+1

l ) : l ∈ L, i = 1, . . . , Kl − 1}. The graph is thus not complete: for a
location l ∈ L, the node v1

l is reachable from all the other nodes in the graph, but for 2 ≤ i ≤ Kl

the node vi
l is only reachable from node vi−1

l . In other words, the node vi
l represents the ith

visit of location l, which is only reachable after (i − 1) previous visits of l. Figure 2 provides a
minimal example with two locations and four nodes. The drop-off point v0 is reachable from
all the other nodes. Note that the arcs in E are not associated with a weight in the general
case, since the distance between two nodes depends on the routing policy. Actually, for some
policies, the distance between two nodes is not constant as it depends on the nodes previously
visited by a path. We assume that the distances satisfy the triangle inequality.

Problem description. The SLAPRP can be formally described as follows. A graph
warehouse layout is given, represented by a graph G as previously introduced. The aim is
to assign a set of SKUs S to the storage nodes V . Without loss of generality, we assume that
|S| ≤ |V|. A set of orders O needs to be collected by the pickers. An order o ∈ O contains a
subset S(o) of SKUs to be picked, and corresponds to one picking route. A route is defined as
a tour on graph G starting and ending at the drop-off point. A route is valid if and only if it
visits the storage nodes assigned to its set of SKUs S(o). Each route is associated with a cost
that represents the walking distance covered by a picker and depends on the routing policy. A
set F ⊂ S × L of fixed assignments represents the locations that are already filled. For a pair
(s, l) ∈ F , a SLAPRP solution may only be valid if SKU s is assigned to location l. Note that
F is empty in most variants of the SLAPRP.

3 Problem formulation

Let us introduce Ro as the set of possible routes to retrieve order o ∈ O and let cor be the
walking distance of a route r ∈ Ro. We consider binary variables ρor that equal one if route
r ∈ Ro, is selected to collect o ∈ O, 0 otherwise, and binary variables ξls that equal one if SKU
s ∈ S, is placed in location l ∈ L, 0 otherwise. We also consider a parameter al

or ∈ {0, 1, 2}
which counts the number of picks made at location l for route r to collect order o. The SLAPRP
can then be formulated as follows:

(FSLAP RP ) min
∑
o∈O

∑
r∈Ro

corρor (1)

s.t.
∑
s∈S

ξls ≤ Kl ∀l ∈ L (2)
∑
l∈L

ξls = 1 ∀s ∈ S (3)

ξls = 1 ∀(s, l) ∈ F (4)∑
r∈Ro

ρor = 1 ∀o ∈ O (5)
∑

r∈Ro

al
orρor ≥

∑
s∈S(o)

ξls ∀l ∈ L, o ∈ O (6)

ρor ∈ {0, 1} ∀o ∈ O, r ∈ Ro (7)
ξls ∈ {0, 1} ∀l ∈ L, s ∈ S (8)



The objective function (1) is the sum of the distances of the selected routes in the solution.
Constraints (2) and (3) are the assignment constraints and ensure that the capacity of each
location is satisfied and each SKU is placed in one location. Constraints (5) ensure that exactly
one route is chosen to retrieve each order. Constraints (6) ensure that the route that collects
o ∈ O stops at location l ∈ L if there is an SKU s ∈ S(o). They also ensure that the number
of stops in this location is consistent with the number of SKUs of the order in this location.

The LP relaxation of (FSLAP RP ) is obtained by replacing binary requirements with non-
negativity requirements on variables ρ and ξ. It is referred to as the Master Problem (MP).
When the MP is defined over subsets of routes Ro ⊂ Ro for at least one order o ∈ O we call
it the Restricted Master Problem (RMP).

Note that FSLAP RP is generic in the sense that we do not assume any particular layout on
the storage area, nor any particular routing strategy to collect orders.

4 Strengthened Linking Inequalities

In this section, we introduce a family of valid inequalities for FSLAP RP that tighten its linear
relaxation by strengthening the link between assignment variables and routing variables. The
proof of validity of such inequalities is omitted due to space limitation.

Proposition 1 Given L ⊂ L, the following inequalities (coined SL inequalities) are valid for
formulation FSLAP RP ∑

r∈Ro

δr(L)ρor ≥
∑
l∈L

ξls ∀o ∈ O, s ∈ S(o) (9)

where δr(L) is a parameter that equals 1 if route r ∈ Ro, o ∈ O, stops in one of the locations
in L ⊂ L, 0 otherwise.

4.1 Special case SL inequalities of order 1.

In the general case, the SL inequalities are non-robust, and their number is exponential. How-
ever, SL inequalities of order 1 (i.e., |L| = 1, SL-1 in the following) are robust with the proposed
formulation, and their number is polynomial. Let us define the parameter bl

or that equals 1
if route r ∈ Ro stops at location l ∈ L, 0 otherwise. The SL-1 family of inequalities can be
expressed as follows: ∑

r∈Ro

bl
orρor ≥ ξls ∀l ∈ L, o ∈ O, s ∈ S(o) (10)

As constraints (6) of (FSLAP RP ), inequalities (10) link assignment and routing variables. The
difference lies in the way stops are counted: a route that stops twice in a location is counted
once on the left-hand side of inequalities (10), while it is counted twice in the constraints (6).

Note that with the addition of SL-1 cuts the following theorem holds. The proof of this
result is omitted due to space limitation.

Theorem 1 Let X = (ξ, ρ) be an optimal solution of the RMP, strengthened by SL-1 inequal-
ities. If variables ξ are integral, then X is integral, or there exists an integral solution X ′ of
the same cost.

Note that we take advantage of the result of Theorem 1 to design an efficient branching
scheme (details will be provided later).

The valid inequalities are separated using a dynamic programming (DP) procedure. The
DP is solved for each o ∈ O and s ∈ S and, in order not to spend a prohibitive amount of
time, several algorithmic enhancements are proposed to efficiently prune the search.



5 Branch-Cut-and-Price algorithm

To solve SLAPRP we propose a Branch-Cut-and-Price algorithm (BCP) which is a Branch-
and-Bound algorithm in which the dual bound of each node of the tree is computed using the
linear relaxation of an extended formulation, solved by column generation, and strengthened
by the addition of cutting planes presented before.

The column generation iteratively solves a pricing problem that is in charge to find columns
with a negative reduced cost that are then added to the RMP, or prove that none exists. The
pricing problems for the SLAPRP are modeled as Elementary Shortest Path Problems with
Resource Constraints (ESPPRC). Note that the pricing problem, and more specifically the
resource extension function, is the only algorithmic component that depends on the variant
considered (i.e., layout and storage policy), which makes the proposed BCP framework generic.

To recover integrality of the solution, a branching scheme is necessary. According to Theo-
rem 1, the integrality of the ξ variables guarantees the integrality of the solution, we therefore
only need to branch on such variables. Moreover, branching on the ξ variables does not impact
the resolution of the subproblems. Based on these observations, a natural branching scheme,
called location branching, would be to branch on the most fractional ξ variable. However, pre-
liminary experiments showed that this strategy produces unbalanced search trees. To overcome
this drawback, we propose a two-level branching strategy, called combined branching. At the
first level, we branch on the assignment of SKUs in entire aisles (instead of single locations).
Since integer aisle locations are not sufficient to restore integrality in the solutions, we use
the location branching at the second level. All branching constraints are strengthened by a
symmetry breaking procedure based on isomorphic pruning [6].

In order to speed-up the BPC, it also features, among other algorithmic enhancements, an
ad-hoc primal heuristic to provide high-quality solutions, both to warm-start the BPC and
provide primal bounds during the search, and a dynamic management of the active SL cuts in
the formulation via a cut pool.

6 Computational experiments

The algorithm is coded in Julia 1.7.2, and CPLEX 12.10 is used to solve linear programs.
We set CPLEX to use the dual simplex method, all other parameters use the default setting.
The experiments are performed in single-thread computation on an Intel Xeon E5-2660 v3
clocked at 2.6 GHz, with a 16 GB memory limit. Each run of the BPC is limited to two
hours. The detailed computational results, as well as the used instances, are available at
https://zenodo.org/record/7866860.

Instances of [7]. These instances use a classical single block layout, with the number of
aisles in {1, 3, 5}, each with {5, 10} storage locations. The number of SKUs is between 10 and
100. The demand is characterized by |O| ∈ {1, 5, 10}, and each order contains the same amount
of products |S(o)| ∈ {3, 5}, sampled with a uniform distribution. A total of 540 instances are
solved with classical routing policies (optimal, return, S-shape, midpoint, and largest gap).

Instances of [3]. These instances are inspired by a real-life warehouse and focus on the
replenishment problem. The set of fixed positions F is nonempty, where α ∈ {20%, 30%, 40%}
of the SKUs whose locations are free in the picking area. The demand is modeled by |O| ∈
{50, 100, 200}, each with a random amount of SKUs in the range |S(o)| ∈ {1, . . . , 10}. The
warehouse layout is double-block. The return routing policy is used.

Impact of the SL cuts. When FSLAP RP is solved without the addition of SL cuts, it
provides an average optimality gap of 7.6%. When adding the SL-1 cuts the average optimality
gap goes to 6.9%. Finally, when SL-cuts are considered the average optimality gap reduces to
4.6%. Note that a compact formulation for the SLAPRP, strengthened with SL-1 cuts (which
are robust and thus can be considered) provides an optimality gap of 64.6%.

Impact of the branching schemes. Results show that the combined branching scheme
increases the number of solved instances and provides lower optimality gaps for the non-solved



instances. For the instances with more than one aisle, the average tree size for closed instances
is reduced by 62% when combined branching is used. The gap for non-solved instances is also
reduced from an average of 9.7 to 3.9 when using the combined strategy.

Overall performances. The BPC solves to optimality 115 previously unclosed instances
from [7]. For the instances from [3], which were already closed, the BCP scales better with the
number of orders, being on large instances several orders of magnitude faster than the previous
state-of-the-art algorithm.

7 Conclusion and perspectives
In this paper, we introduced a new exact solution approach to solve the SLAPRP and a large
class of its variants, including other warehouse layouts, the most common heuristic routing poli-
cies (i.e., return, S-shape, midpoint, and largest gap), and the partial replenishment variant of
the problem. The developed Branch-Cut-and-Price algorithm is benchmarked on the instances
from [7] and [3]. Results show that it is the new state-of-the-art algorithm for different variants
of the SLAPRP.

In the future, we expect further research on integrated problems in warehousing logistics
to answer the challenges of e-commerce, as it has been highlighted by other authors [2, 8].
A natural extension of the present work is the development of a matheuristic able to tackle
industrial-scale instances as well as extending our algorithm to other variants of the SLAPRP
(e.g., several block warehouses), which is left for future research.
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