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1 Introduction
Proportional fairness (PF) is a concept widely studied in the fields of telecommunications, net-
work design, resource allocation, and social choice. The goal of PF is to provide a compromise
between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian
rule - which emphasizes individual fairness. For example, in wireless communication systems,
PF is often used in the allocation of transmission power, bandwidth, and data rates among
mobile users to maximize overall system throughput while ensuring fair access for all users [1].
In network scheduling and traffic management, PF plays a significant role in packet schedul-
ing algorithms. It helps ensure that packets from different flows or users are treated fairly,
preventing any single user from dominating network resources [2].

If the feasible set is convex, PF coincides with the Nash bargaining solution which always
exists and can be obtained by maximizing the product of the objectives or equivalently, by
maximizing a logarithmic sum problem [1]. Since solving this problem is computationally
expensive, in practice, heuristic algorithms are often employed to find approximate solutions
that achieve near-PF in some special scenarios (see, e.g., [2]). In contrast, when dealing with
non-convex optimization, the existence of PF is not guaranteed and if it exists, it is also
the (unique) Nash bargaining solution [1], [3]. Thus, finding PF under non-convexity is not
equivalent to any known optimization problem, making it even more difficult. To address such
a case, popular approaches involve considering certain non-convex sets, which are convex after
a logarithmic transformation [3]. An alternative approach is to introduce the concept of local
proportional fairness, which is always achievable, and then analyze its properties [4].

This paper proposes a novel approach for investigating PF within the field of combinato-
rial optimization where the feasible set is generally finite and non-convex. For this purpose,
we consider a general Max-Max Bi-Objective Combinatorial Optimization (Max-Max BOCO)
problem where its two objectives to be simultaneously maximized take only positive values.
Then, we seek to find the solution to achieving PF between two objectives which is referred to
as proportional fair solution (PF solution). We first show that the PF solution, when exists,
can be found by maximizing a suitable linear combination of two objectives. Then, our main
contribution lies in presenting an exact algorithm that converges within a logarithmic number
of iterations to determine efficiently the PF solution. Finally, we provide computational results
conducted on the Bi-Objective Spanning Tree Problem (BOSTP) which is a specific example
of Max-Max BOCO.

Notice that for Max-Max BOCO where the linear combination of two objectives can be solved
in polynomial time, based on our algorithm, the PF solution can be determined in weakly
polynomial time. To the best of our knowledge, this is the first approach in combinatorial
optimization where an efficient algorithm has been developed for identifying PF.

The paper is organized as follows. In Section 2, we discuss the characterization of the
PF solution for Max-Max BOCO. In Section 3, we propose a binary search algorithm for



determining the PF solution. Computational results on some instances of the BOSTP will be
presented in Section 4. Finally, in Section 5, we give some conclusions and future works.

2 Characterization of the PF solution for Max-Max BOCO
Let P (x), Q(x) > 0 be the two objectives of Max-Max BOCO and X be the finite and non-
convex set of feasible decision vectors x. Let (P, Q) = (P (x), Q(x)) denote the objective values
corresponding to x ∈ X . Throughout this paper, the feasible solutions for Max-Max BOCO will
be represented by the pairs of objective values (P, Q) instead of the decision vector solutions.
Thus, two feasible solutions having the same values of (P, Q) will be considered equivalent
and denoted by the notation "≡". Let S represent the set of pairs (P, Q) corresponding to all
feasible decision vector solutions. Since X is finite, S is also a finite set. For Max-Max BOCO,
the PF solution (P P F , QP F ) should be such that, if compared to any other solution (P, Q), the
aggregate proportional change is non-positive (see, e.g., [1]). Mathematically, we have

P − P P F

P P F
+ Q−QP F

QP F
≤ 0 ⇐⇒ P

P P F
+ Q

QP F
≤ 2, ∀(P, Q) ∈ S, (1)

We will show that the PF solution, if exists, can be obtained by maximizing a suitable linear
combination of P and Q by considering the optimization problem:

F(α) = max
(P,Q)∈S

fα(P, Q) := P + αQ,

where α ≥ 0 is an appropriate coefficient to be determined. Notice that we assume the existence
of the algorithms for solving F(α) with α ≥ 0.

Theorem 1. (P P F , QP F ) ∈ S is the PF solution if and only if it is a solution of F(αP F ) with
αP F = P P F /QP F .

Proof. =⇒ Let (P P F , QP F ) be the PF solution and αP F = P P F /QP F . We have

P

P P F
+ Q

QP F
≤ 2, ∀(P, Q) ∈ S, (2)

Multiplying (2) by P P F > 0 and replacing P P F /QP F by αP F , we obtain

P P F + αP F QP F ≥ P + αP F Q, ∀(P, Q) ∈ S,

Hence, (P P F , QP F ) is a solution of F(αP F ).
⇐= Let (P P F , QP F ) be a solution of F(αP F ) with αP F = P P F /QP F . We have

P + αP F Q ≤ P P F + αP F QP F , ∀(P, Q) ∈ S,

Replacing αP F by P P F /QP F , we obtain (2) which implies (P P F , QP F ) is the PF solution.

Then, the main question now is how to propose a binary search algorithm for determining
the PF solution based on Theorem 1. We will address this question in the next section.

3 Binary search algorithm for determining the PF solution

3.1 Algorithm construction

For a given αk ≥ 0, let T (αk) := Pk−αkQk where (Pk, Qk) is a solution of F(αk). According to
Theorem 1, let (P P F , QP F ) and αP F denote respectively the PF solution and the PF coefficient
such that (P P F , QP F ) is a solution of F(αP F ) and T (αP F ) = P P F − αP F QP F = 0.



We first show the monotonic relationship between α ≥ 0 and the solution of F(α) with
respect to the values of P and Q. As a consequence, we also deduce the monotonic relationship
between α and T (α).

Lemma 1. Given 0 ≤ α′ < α′′ and let (P ′, Q′), (P ′′, Q′′) ∈ S be respectively the solutions of
F(α′) and F(α′′). Then P ′ ≥ P ′′ and Q′ ≤ Q′′. Moreover, T (α′) > T (α′′).

Proof. The optimality of (P ′, Q′) and (P ′′, Q′′) gives

P ′ + α′Q′ ≥ P ′′ + α′Q′′, and (3a)
P ′′ + α′′Q′′ ≥ P ′ + α′′Q′ (3b)

Adding (3a) and (3b) gives (α′ − α′′)(Q′ −Q′′) ≥ 0. Since α′ < α′′, Q′ ≤ Q′′.
On the other hand, the inequality (3a) implies P ′ − P ′′ ≥ α′(Q′′ −Q′) ≥ 0.
Since P ′ ≥ P ′′, Q′ ≤ Q′′ and α′ < α′′, we obtain T (α′) = P ′ − α′Q′ ≥ P ′′ − α′Q′′ >

P ′′ − α′′Q′′ = T (α′′).

According to Lemma 1, if α′ < α′′ and (P ′, Q′) is the solution of both F(α′) and F(α′′) then
(P ′, Q′) is the solution of F(α), ∀α ∈ (α′, α′′). For given 0 ≤ αi < αj and T (αi)T (αj) > 0, we
also have αP F ̸∈ (αi, αj) because for α′ ∈ (αi, αj) and an arbitrary solution (P ′, Q′) of F(α′),
T (α′) has the same sign as T (αi) and T (αj) which implies T (α′) ̸= 0 and then α′ ̸= αP F .

Let αsup be an upper bound of αP F such that αP F < αsup. According to the results of
Theorem 1 and Lemma 1, the main idea of our algorithm is based on a binary search algorithm
in the interval [0, αsup]. More precisely, we use Procedure SEARCH () to identify the PF
solution and the PF coefficient αP F in such interval, ensuring that T (αP F ) = 0. Starting from
an interval [αi, αj ] ⊆ [0, αsup] with T (αi) > 0 and T (αj) < 0, Procedure SEARCH () selects αs

as the midpoint of the interval [αi, αj ] and solve F(αs) to obtain a solution (Ps, Qs). Then,
we use Procedure Verify_PF_sol(αs, Ps, Qs) to verify whether (Ps, Qs) is the PF solution.
If the verification is unsuccessful, the half-interval in which the PF coefficient cannot exist
is eliminated and we retain only one half-interval for further exploration within Procedure
SEARCH (). The choice is made between [αi, αs] and [αs, αj ], depending on the sign of T (αs).
The parameter ϵ guarantees the absence of the PF coefficient in an interval whose length
is less than ϵ. In other words, for an interval [αl, αl + ϵ], there exists a feasible solution
(Pl, Ql) ̸≡ (P P F , QP F ) which is a solution of both F(αl) and F(αl + ϵ). Thus, our algorithm
always converges in a logarithmic number of iterations in terms of ϵ and αsup. Note that we
can set ϵ to a predefined small positive value (e.g. 0.01).

3.2 Algorithm statement and proofs

In this section, we first introduce Procedure Verify_PF_sol(α0, P0, Q0) to verify whether a
solution (P0, Q0) of F(α0) is the PF solution. Its proof will be stated in the next lemma.

Procedure 1 Verify whether a solution (P0, Q0) of F(α0) is the PF solution
Input: α0 ≥ 0, (P0, Q0) ∈ S is a solution of F(α0).
Output: True if (P0, Q0) is the PF solution or False otherwise.

1: procedure Verify_PF_sol(α0, P0, Q0)
2: α′ ← P0/Q0
3: solving F(α′) to obtain the solution (P ′, Q′).
4: if fα′(P ′, Q′) = fα′(P0, Q0) then return True
5: else return False
6: end if
7: end procedure

Lemma 2. Given α0 ≥ 0 and (P0, Q0) ∈ S as a solution of F(α0). Let α′ = P0/Q0 and (P ′, Q′)
be a solution of F(α′). Then (P0, Q0) is the PF solution if and only if fα′(P ′, Q′) = fα′(P0, Q0).



Proof. =⇒ If (P0, Q0) is the PF solution then (P0, Q0) is also a solution of F(α′) due to
Theorem 1. Thus, fα′(P ′, Q′) = fα′(P0, Q0).
⇐= If fα′(P ′, Q′) = fα′(P0, Q0) then (P0, Q0) is also a solution of F(α′). Since α′ = P0/Q0,

(P0, Q0) is the PF solution due to Theorem 1.

Subsequently, from 0 ≤ αi < αj and (Pi, Qi), (Pj , Qj) as the solutions of F(αi) and F(αj),
we present Procedure SEARCH(αi, Pi, Qi, αj , Pj , Qj , ϵ) for determining the PF solution where
the PF coefficient αP F is in the interval [αi, αj ].

Procedure 2 Determine the PF solution where the PF coefficient is in the interval [αi, αj ]
Input: a positive parameter ϵ small enough, (αi, Pi, Qi) and (αj , Pj , Qj) satisfy:

• 0 ≤ αi < αj , (Pi, Qi), (Pj , Qj) are respectively solutions of F(αi) and F(αj).
• (Pi, Qi) and (Pj , Qj) are not PF solutions, T (αi) > 0 and T (αj) < 0.

Output: The PF solution if it exists or Null otherwise.
1: procedure SEARCH(αi, Pi, Qi, αj , Pj , Qj , ϵ)
2: if αj − αi ≥ ϵ and (Pi, Qi) ̸≡ (Pj , Qj) then
3: αs ← (αi + αj)/2
4: solving F(αs) to obtain a solution (Ps, Qs)
5: if Verify_PF_sol(αs, Ps, Qs) == True then return (Ps, Qs)
6: end if
7: T (αs)← Ps − αsQs

8: if T (αs) > 0 then return SEARCH(αs, Ps, Qs, αj , Pj , Qj , ϵ)
9: else if T (αs) < 0 then return SEARCH(αi, Pi, Qi, αs, Ps, Qs, ϵ)

10: end if
11: else return Null
12: end if
13: end procedure

Finally, our algorithm to determine the PF solution can be stated as follows.

Algorithm 3 Determine the PF solution for Max-Max BOCO
Input: An instance of Max-Max BOCO, a positive parameter ϵ small enough.
Output: PF solution if it exists or Null otherwise.

1: solving F(0) to obtain a solution (P0, Q0)
2: if V erify_PF_sol(0, P0, Q0) == True then return (P0, Q0)
3: end if
4: αsup ← P0/Q0 + 1
5: solving F(αsup) to obtain a solution (P sup, Qsup)
6: if V erify_PF_sol(αsup, P sup, Qsup) == True then return (P sup, Qsup)
7: else return SEARCH(0, P0, Q0, αsup, P sup, Qsup, ϵ)
8: end if

Notice that since 0 < αP F and 0 < αsup, P0 ≥ P P F , Q0 ≤ QP F and P0 ≥ P sup, Q0 ≤ Qsup

due to Lemma 1. Thus, αP F = P P F /QP F ≤ P0/Q0 < αsup. Moreover, T (0) = P0 > 0 and
T (αsup) = P sup − αsupQsup < P sup − P0

Q0
Qsup ≤ 0.

By the following theorem, we will show that Algorithm 3 can determine the PF solution in
a logarithmic number of iterations in terms of ϵ and αsup.
Theorem 2. Algorithm 3 can determine the PF solution in a logarithmic number of iterations
in terms of ϵ and αsup.
Proof. The execution of Algorithm 3 is based on the binary search algorithm for the interval
[0, αsup] with a length equals αsup. At each iteration, we divided an interval into two half-
intervals with equal length. Then, the half in which the PF coefficient cannot exist is eliminated



and the search continues on the remaining half. Since Algorithm 3 terminated in the worst case
when it found an interval with a length smaller than ϵ, the number of iterations for Algorithm
3 is O(log2

αsup

ϵ ). Consequently, Algorithm 3 can determine the PF solution in a logarithmic
number of iterations in terms of ϵ and αsup.

As a result of Theorem 2, if solving F(α) can be done in polynomial time, the PF solution
can be determined in weakly polynomial time. Notice that the Bi-Objective Spanning Tree
Problem (BOSTP) considered in the next section belongs to this category.

4 Experimental study on the BOSTP

4.1 Definition, modeling and algorithm for the BOSTP

In this section, we consider a BOSTP which merges the Maximum STP, which involves max-
imizing the total profit, and the Max-Min STP, where the goal is to maximize the minimum
edge reliability. For the BOSTP, we find a spanning tree achieving PF between two objectives:
the total profit representing the overall efficiency and the minimum of the edge reliability rep-
resenting the individual fairness. For the simplicity of calculation, we suppose that the values
of profit and reliability are positive integers. Furthermore, we set the value of ϵ as 0.01.

We consider a finite, connected, undirected graph G = (V, E) where V = [n] := {1, ..., n}
with n ≥ 2, |E| = m and pe, re ∈ Z+ are two weights associated with edge e ∈ E representing
respectively profit and reliability on this edge. Let T (G) denote the set of all spanning trees
in G. Let P, Q > 0 denote respectively the total profit and the minimum edge reliability in a
spanning tree T of G. We have P =

∑
e∈T,T ∈T (G)

pe and Q = min
e∈T,T ∈T (G)

re.

When α = 0, solving F(α) is equivalent to solving the Maximum STP which can be done in
polynomial time by using Kruskal’s algorithm [5]. For solving F(α) with α > 0, we construct
a polynomial-time algorithm which is similar to the one for solving Min-Max STP where the
maximum edge weight is to be minimized [6]. It is based on there are at most m different
values of Q. Let r1 ≤ r2 ≤ ... ≤ rm be the sorted list of reliability values corresponding to
m edges e1, e2, ..., em and let Ei = {ej |rj ≥ ri},∀i = 1, 2, .., m. We select respectively the
minimum edge reliability as ri for i = 1, 2, ..., m and then we determine a spanning tree whose
edges are in Ei that maximizes the sum of profit and contains the edge ei (i.e., we solve the
Maximum STP on the edge set Ei with the fixed edge ei). Notice that Ei may not contain a
feasible spanning tree (in this case, we set the optimal value of fα(P, Q) as 0). By comparing
the corresponding optimal values of fα(P, Q) in these m selections, we obtain a solution for
F(α). Hence, the PF solution for the BOSTP can be determined in weakly polynomial time.

4.2 Computational results on the instances of the BOSTP

We investigate the performance of the presented algorithm for the BOSTP on the random
NetworkX graph. It returns a Gn,pro random graph, also known as an Erdos-Renyi graph
where n is the number of nodes and pro is the probability for edge creation. For this paper,
the number of nodes is selected from the interval [30,40] with probability pro = 0.5. Moreover,
the edge profit and the edge reliability are generated uniformly randomly respectively in the
intervals [100, 900] and [10, 90]. The optimal solutions for the Maximum STP, Max-Min STP,
and BOSTP are shown in Table 1 where the values of P, Q in case the PF solution does not
exist are denoted as "Null". Note that "GNn" represents a generated graph with n nodes. All
the experiments are conducted on a PC Intel Core i5-9500 3.00GHz with 6 cores and 6 threads.

According to Table 1, we obtained the PF solutions for most instances and they are different
from the solutions of the Maximum STP and the Max-Min STP. Generally, the PF solutions
offer a more favorable compromise between two objectives than the solutions of the Maximum
STP (resp. Max-Min STP): the significant increase in the values of Q (resp. P ) compared
to the slight drop in the values of P (resp. Q) in percentage. Table 1 also indicates that our



TAB. 1: Computational results of Maximum STP, Max-Min STP and BOSTP

Instance Maximum STP Max-Min STP BOSTP
P Q Time P Q Time P Q Time Iters

GN30 24259 12 0.10 14062 74 0.30 21633 67 3.28 2
GN32 24272 16 0.07 13359 74 0.08 18651 71 1.96 2
GN34 28329 11 0.08 19314 77 0.24 Null Null 5.24 5
GN36 28554 17 0.05 17944 69 0.25 25138 68 4.42 2
GN38 33531 10 0.14 20432 73 0.24 28358 72 6.45 3
GN40 33681 12 0.14 17789 79 0.65 29171 68 5.07 2

algorithm seems to converge quickly in terms of time calculation and number of iterations,
especially when the PF solution exists. Another important remark is that the existence of the
PF solution seems to be much related to the edge weights and the structure of the graph rather
than to the size of the graph. Although we selected randomly the values of profit and reliability,
they appeared with a high frequency, approximately 85% over the total tested instances.

5 Conclusion
In this paper, we have utilized proportional fairness in the context of Max-Max BOCO where
the two objectives to be maximized take only positive values and the feasible set is finite and
non-convex. We considered a general Max-Max BOCO problem where we looked for a solution
achieving proportional fairness between two objectives - which is referred to as PF solution. We
first presented the characterization of the PF solution for Max-Max BOCO. Then, we designed
an exact algorithm that converges within a logarithmic number of iterations to determine the
PF solution. Computational experiments on some instances of the Bi-Objective Spanning Tree
Problem have shown the efficiency of our algorithm, indicating its rapid convergence.

For future works, in cases the PF solution does not exist, we are interested in modifying our
algorithm to provide a near-PF solution maximizing the product of the objectives, resembling a
generalized Nash bargaining solution. Furthermore, the results of this paper could be extended
to multi-objective combinatorial optimization involving more than two objectives.
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