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1 Introduction
We consider a single-server multi-class system, where the service for each class is modulated by
a dedicated dynamic ON-OFF environment. We analyze the role of timing by considering two
types of scheduling: preemptive scheduling, where decisions can be made at any transition,
and non-preemptive scheduling, where decisions can be made only at departure times. By
explicitly describing the maximum stability regions in each case, we show that a significant
impact on the stability occurs as a byproduct of these timing constraints. This contrasts with
scenarios lacking modulations, where the well-established equivalence in terms of stability
between preemptive and non-preemptive settings holds.

The preemptive case has been already studied in [1]. We introduce a novel fluid description
that significantly simplifies the previous provided analysis, and that allows us to analyse also
the non-preemptive case. In both cases, we show that serving the longest queue among the
ones that are ON is a maximum stable policy.

2 Model description, main result
The model. Consider a single server system comprising K classes or queues, where the classes
have their distinct arrival rates for incoming jobs, denoted by λ1, . . . , λK , and their distinct
service rates, denoted by µ1, . . . , µK . Additionally, each queue operates within a two-state
random environment characterized by ON and OFF states. When a queue’s environment
is in the OFF state, the queue is unable to receive service. The randomness governing the
evolution of these environments may vary according to the class, and correlations between
environments linked to different classes are allowed. We make the sole assumption that the
overall environment, regarded as a collection of multiple environments across all queues, is
ergodic. This assumption enables the establishment of a stationary distribution ν on the set
of environments {(e1, . . . , eK) : ei ∈ {ON, OFF}}.
Preemptive vs non-preemptive. By simplicity, we restrict to policies that take decisions
based solely on the current state of the system. The state contains the information about the
environment or, in other words, observability of the environment is assumed.

In the preemptive case, for a fixed distribution of the environments, the maximum stability
region is defined as

MSRP = {(λ1, . . . , λK , µ1, . . . , µK) : ∃ a policy that stabilizes the system}. (1)

Once a policy is fixed, we have a Markov process with countable state space, and stability is
defined as positive recurrence.

In the non-preemptive case, the maximum stability region is called MSRNP, and is defined
as in (1) but running the set over non-preemptive policies.
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Serve the longest connected (SLC) policy. We define the Serve the longest connected
(SLC) policy (see [2]) as the policy that serves the longest queue (the one with the highest
number of waiting jobs) among the queues that are ON.
Main result. The following is our main result.

Theorem 1 In the preemptive case, MSRP is characterized by∑
i∈J

ρi < 1 − ν(ei = OFF ∀i ∈ J) ∀J ⊆ {1, . . . , K}, (2)

where ρi = λi

µi
stands for the load of the i-th queue. In the non-preemptive case, MSRNP is

characterized by
K∑

i=1

ρi

ν(ei = ON) < 1. (3)

In both cases, the maximum stability regions are attained by the SLC policy.

Proof idea: fluid limits. A simple rate-stability argument shows that, both in the pre-
emptive and non-preemptive cases, the corresponding conditions are necessary to have stable
policies. In the other direction, we need to prove that the SLC policy is stable under the pa-
rameter requirements, which is addressed by a fluid limit approach. More precisely, we prove
that for any fluid limit, the derivative of the maximum fluid queue size remains below a neg-
ative constant. We describe how to do so only in the preemptive case, as the non-preemptive
one is similar.

Let U = (Ui)i : [0, ∞) → RK be a fluid limit. Assuming that 0 ≤ t1 < t2 are such that

J := argmax
1≤i≤K

Ui(t1) = argmax
1≤i≤K

Ui(t2) and min
i∈J

Ui(t) > max
i/∈J

Ui(t) ∀t ∈ [t1, t2], (4)

we are able to prove the following identity concerning the slope of the maximum:
maxi∈J Ui(t2) − maxi∈J Ui(t2)

t2 − t1

∑
i∈J

1
µi

=
∑
i∈J

ρi − [1 − ν(ei = OFF ∀i ∈ J)]. (5)

The attainment of this equality was possible thanks to the fact that, under hypotheses (4), we
can precisely control the effective dedicated time of service to the queues in J . The aforemen-
tioned control over the derivative of the maximum now follows in conjunction with a series of
formal additional steps, together with the fact that, due to (2), the r.h.s. of (5) is negative.
Graphical descriptions. To finish, we present a graphical representation of MSRP and
MSRNP in the simple case K = 2.
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