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1 Introduction
Let G = (V, A) be a directed graph where A is a set of m arcs and V is a set of n vertices
with a source s ∈ V and a destination t ∈ V . Each arc a ∈ A is given a capacity ca ∈ Z+.
We also denote an arc a as (u, v) where u ∈ V is the tail and v ∈ V is the head. Let ya be
a non-negative continuous variable representing the value of the flow passing through an arc
a ∈ A. A flow from the source to the destination has to respect the following two types of
constraints. The first m constraints are called the capacity constraints for the arcs:

0 ≤ ya ≤ ca, a ∈ A, (1)

and the second set of n constraints are called the flow-conservation constraints for the vertices:∑
a ∈ δ+(u)

ya =
∑

a ∈ δ−(u)
ya, u ∈ V, (2)

where δ+(u) =
{
(u, v) ∈ A : v ∈ V \ {u}

}
(the outgoing arcs) and δ−(u) =

{
(v, u) ∈ A :

v ∈ V \ {u}
}

(the incoming arcs). Without loss of generality, we consider graphs in which the
source has only one entering arc from the destination, i.e., δ−(s) = (t, s) and the destination
has only one outgoing arc, i.e., δ+(t) = (t, s). Finally, let φ(G) be the function returning the
value of the flow outgoing from the source in a graph G:

φ(G) =
∑

a ∈ δ+(s)
ya, (3)

which is also equal to the value of the flow entering the destination as well as the flow on the
arc (t, s), due to the flow conservation constraints (2).

The maximum flow problem (MFP) asks to determine the maximum flow of a graph. It is
one of the fundamental optimization problems largely studied in the literature, see e.g., [3].
A well-known min-max relation links the MFP to the minimum cut problem (MCP). This
relationship establishes an equivalence between the two problems. Given a subset of vertices
U ⊆ V such that s ∈ U and t ∈ V \U , a cut of G, denoted by δ(U), is the subset of arcs having
the head in U and the tail in V \ U . We call the value of the cut the sum of the capacities of
its arcs. Accordingly, the MCP asks for finding a cut with a minimum value.

This paper studies the blocker variant of the maximum flow problem in which each arc a ∈ A
is also given an blocker cost ra ∈ Z+. This problem, called the maximum flow blocker problem
(MFBP), consists in finding a minimum-cost subset of arcs to be blocked, i.e., removed from
the graph, in such a way that the maximum flow value between s and t in the remaining graph
is no larger than a given threshold. The threshold, denoted by Φ, is called the target flow.



Applications The problem is motivated by applications in several domains. In telecommu-
nication networks, the flow routed on an arc represents the amount of data sent from the source
to the destination and passing through that arc. However, some arcs may be malfunctioning
due to anomalies, failures or packet loss caused by congestion. In this context, MFBP optimal
solutions allow analyzing the network resilience in case of malfunctioning arcs, modeled by
removing the arcs from the graph. Precisely, considering a network with blocker costs equal
to one, it is said to be resilient to f simultaneous failures if after the removal of any set of
at most f arcs, there exists a flow of value larger than the target flow Φ. Accordingly, an
optimal MFBP solution is a set of arcs of minimum cardinality ζ(G) such that the network is
not resilient to ζ(G) simultaneous arc failures with respect to a target flow Φ. By considering
f = ζ(G) − 1, since ζ(G) is the minimum size of the set of arcs, removing any set of arcs of
size at most ζ(G)−1 (maximum simultaneous malfunctioning arcs) ensures that the maximum
flow value in the remaining graph is larger than Φ. A further application of the MFBP is in
the context of monitoring civil infrastructure, where the aim is to monitor the transportation
links in order to reduce illegal traffics .

Related work To the best of our knowledge, there are no articles dealing with the MFBP.
However, a closely related problem, called the maximum flow interdiction problem (MFIP), has
been largely studied in the literature. Given a graph, together with capacities and interdiction
costs on the arcs and an interdiction budget denoted by Ψ, the MFIP consists in finding a
subset of arcs of total interdiction cost no larger than Ψ to be removed from the graph in such
a way that the maximum flow value is minimized. It is worth noticing that the MFIP and the
MFBP have the same decision problem. Since the MFIP is N P-hard, as demonstrated in [4],
the following result holds for the MFBP.
Proposition 1 The MFBP is N P-hard.

Our contribution The aim of this paper is to propose the first Integer Linear Programming
(ILP) formulation to solve the MFBP to proven optimality. After having introduced in Section
2 a bilevel formulation for the MFBP, we derive in Section 3 an ILP formulation that features
a polynomial number of variables and constraints. Then, by exploiting the structure of MFBP
solutions, we establish in Section 4 a strong relationship between the MFBP and the MFIP.
More precisely, we prove that any algorithm designed for one problem can be effectively used to
solve the second problem. To the best of our knowledge, this is the first time a structural link
between solutions of a blocker and an interdiction applied to an other optimization problem
has been clarified. Finally, Section 5 reports some experimental results obtained by solving the
ILP formulation proposed for the MFBP. Thanks to this set of tests, we manage to identify
the features of the MFBP instances which can be solved to proven optimality.

2 A bilevel formulation for the MFBP
In this section we introduce an MFBP model which belongs to the class of blocker models, a
special class of bilevel optimization formulations, see e.g., [2].

There are two types of variables in blocker models, the first-level variables associated with
the so-called leader problem which affect the second-level variables associated with the so-called
follower problem. For the MFBP, the leader determines a set of blocked arcs to be removed
from the graph and the follower determines the maximum flow in the remaining graph.

Let us introduce a vector x ∈ {0, 1}m of m binary first-level variables, each variable xa is
associated to an arc a ∈ A and it takes value 1 if and only if the arc a is blocked, i.e., removed
from the graph G. Let us introduce a second vector y ∈ Qm

+ of m non-negative second-level
variables, each variable ya ≥ 0 is associated to an arc a ∈ A and it represents the value of the
flow on the arc. Therefore, a bilevel model for the MFBP reads as follows:

ζ(MFBP) = min
x ∈ {0,1}m

∑
a ∈ A

ra xa (4a)



ϑ(x) ≤ Φ, (4b)

where ϑ(x) = max
y ∈ Qm

+

∑
a ∈ δ+(s)

ya (4c)

∑
a ∈ δ+(u)

ya −
∑

a ∈ δ−(u)
ya = 0, ∀ u ∈ V, (4d)

ya ≤ ca (1 − xa), ∀ a ∈ A. (4e)

Constraints (4d) are the flow conservation constraints, see (2), of the vertices. Constraints (4e)
model the capacity constraints of the arcs, see (1), and they impose, at the same time, a flow
of value 0 on blocked arcs.

A binary realisation x ∈ {0, 1}m of the first-level variables is called a blocker policy and it
generates a non-blocked graph GNB(x) =

(
V, ANB(x)

)
, i.e., the graph with the same vertex set

of G and only the non-blocked arcs a ∈ A with xa = 0 (denoted ANB(x)). It is worth noticing
that ϑ(x) corresponds to the maximum value of the function φ(GNB(x)), see equation (3), i.e.,
the maximum flow value in the non-blocked graph GNB(x).

In Theorem 2 of [1], an important structural property of the follower problem is established.
Using this property, given a blocker policy x, the follower problem can be restated as follows:

ϑ(x) = max
y ∈Qm

+

{ ∑
a ∈ δ+(s)

ya −
∑
a ∈ A

xa ya : (1), (2).
}

. (5)

In this LP reformulation, constraints (4e) are replaced with the “standard” capacity constraints
(1) for the arcs. The constraints of the follower do not depend anymore on the first-level
variables and a penalization term is added to the new objective function to ensure that ϑ(x)
is the maximum flow value in the non-blocked graph GNB(x).

In the next section, we derive from Model (4), a single-level ILP formulation exploiting the
nature of the value function ϑ(x), as stated in Model (5).

3 A single level ILP formulation for the MFBP

Given the vector of binary variables x ∈ {0, 1}m representing the blocked arcs, the objective
function of (5) can be re-written as y(t,s) −

∑
a ∈ A xa ya. This is due to the fact that the flow

on the arc (t, s) is equal to the outgoing flow from the source s. Accordingly, the dual of Model
(5) reads as follows:

ϑ(x) = min
γ ∈Qn

+,µ ∈Qm
+

{ ∑
a ∈ A

ca µa : µuv + γv − γu ≥ −xuv, ∀ (u, v) ∈ A, γs − γt ≥ 1
}

. (6)

This dual LP model features a vector µ ∈ Qm
+ of m dual non-negative variables associated

with the capacity constraints (1) and a vector γ ∈ Qn
+ of n dual non-negative variables associ-

ated with the flow conservation constraints (2). The dual Model (6) has a totally unimodular
system of constraints and accordingly, all variables µ take binary values in any optimal dual
solutions and there exists an optimal dual solution where all variables γ take binary values.

By using in (4) the value function ϑ(x) as defined in (6), we can replace ϑ(x) by the objective
function value in (6) since by doing so, we impose that there exists at least a solution of the
follower problem ((4c) - (4e)) whose value is smaller than Φ and accordingly, its optimal solution
value is also smaller than Φ. Therefore, we obtain a compact ILP formulation for the MFBP,
which reads as follows:



ζ(MFBP) = min
x,µ ∈ {0,1}m,γ ∈ {0,1}n

∑
a∈A

ra xa (7a)

∑
a∈A

ca µa ≤ Φ, (7b)

µuv + xuv + γv − γu ≥ 0, ∀ (u, v) ∈ A, (7c)

γs − γt ≥ 1. (7d)

It is worth noticing that in any optimal solution, for a given arc a ∈ A, we can have either
µa = 1 or xa = 1 but not both. This is due to the fact that ra > 0, ∀a ∈ A. If xa = µa = 1, then
the solution obtained by setting µa = 0 and keeping other values unchanged is still feasible
and does not increase the objective function value. For this reason and due to the nature
of constraints (7c) and (7d), an optimal solution of (7) is a cut in the graph G, denoted by
δ(UG(x)), which depends on an optimal blocker policy x. This cut δ(UG(x)) is given by the
arcs a ∈ A where µa = 1 or xa = 1 and it is the union of the set of non-blocked arcs such that
xa = 0 and µa = 1 and the set of blocked arcs such that xa = 1 and µa = 0. If a variable γu is
equal to 1, it indicates that vertex u is in the subset UG(x) containing the source s and if it is
equal to 0, it indicates that vertex u is in the subset V \ UG(x) containing the destination t.
In addition, any optimal solution (x, µ, γ) of Model (7) contains the minimum cut δ(UGNB (x))
in the non-blocked graph GNB(x) which is given by the arcs a ∈ ANB(x) such that µa = 1 and
UGNB (x) is a set of vertices containing the source s. This is due to the fact that constraints
(7c) of Formulation (7) can be equivalently rewritten as follows:

µuv + γv − γu ≥ 0, ∀ (u, v) ∈ ANB(x), (8)

where ANB(x) are the arcs of GNB(x). Together with constraints (7d), they are the standard
MCP constraints for the non-blocked graph GNB(x).

This ILP formulation (7), denoted by c-ILP, is called compact formulation, since it features
a polynomial number of variables and constraints. Accordingly, it can be directly solved using
an ILP solver. It is worth noticing that the structure of c-ILP is similar to the one of the
formulation introduced in [4] for the MFIP. Accordingly, the next section proves that there
exists a structural link between solutions of the MFIP and solutions of the MFBP.

4 Solving the MFBP via the MFIP
Let w ∈ {0, 1}m be a vector of binary variables associated with the set of arcs A of a graph
G, each variable wa takes value 1 if and only if the arc a is removed from the graph G, i.e.,
interdicted. A binary realization of variables w ∈ {0, 1}m is called an interdiction policy and
it generates a non-interdicted graph GNI(w) =

(
V, ANI(w)

)
, i.e., the graph induced by the set

of non-interdicted arcs a ∈ A with wa = 0 (denoted ANI(w)).
By using two sets of binary variables β ∈ {0, 1}m and α ∈ {0, 1}n, the compact ILP

formulation for the MFIP, of [4], is shown in Model (9).

ζ(MFIP) = min
w,β ∈ {0,1}m,α ∈ {0,1}n

∑
a∈A

ca βa (9a)

∑
a∈A

qa wa ≤ Ψ, (9b)

βuv + wuv + αv − αu ≥ 0, ∀ (u, v) ∈ A, (9c)

αs − αt ≥ 1. (9d)



It is worth noticing that constraints (9c) and (9d) share the same structural form as con-
straints (7c) and (7d), respectively. For this reason, an optimal solution of (9) is also a cut
in the graph G, denoted by δ(UG(w)), which depends on an optimal interdiction policy w.
More precisely, the cut δ(UG(w)) is given by the arcs a ∈ A where βa = 1 or wa = 1 and
it is the union of the set of non-interdicted arcs such that βa = 1 and xa = 0 and the set of
interdicted arcs such that wa = 1 and βa = 0. Constraint (9b) imposes that the total inter-
diction cost, i.e., the interdiction cost induced by the set of interdicted arcs, does not exceed
the interdiction budget Ψ. The objective function (9a) minimizes the sum of the capacities of
the non-interdicted arcs contained in the cut δ(UG(w)). Moreover, the minimum cut in the
non-interdicted graph is given by the arcs a ∈ ANI(w) such that βa = 1.

The next proposition shows how to obtain an optimal MFBP solution starting from an
optimal MFIP solution of an instance where the interdiction costs are set to the arc-capacities,
the arc-capacities are set to the blocker costs and the interdiction budget is set to the target
flow value.

Proposition 2 Given an instance of the MFBP (G, c, r, Φ), an optimal solution is given by
an optimal solution of the MCP solved in the non-interdicted graph GNI(w) associated to an
optimal solution w of the MFIP instance (G, q, c, Ψ).

Sketch of proof : Let (G, c, r, Φ) be an instance of the MFBP. We set ra = ca and ca = qa

for every arc a ∈ A and Φ = Ψ. Once the MFIP (see Model ((9a)-(9b))) is solved, its optimal
solution (w, β, α) corresponds to an optimal MFBP solution. Indeed, since w, β ∈ {0, 1}m and
α ∈ {0, 1}n, the constraints of the MFIP, i.e, constraints (9b), (9c) and (9d) become identical
to the constraints of the MFBP, i.e, Constraints (7b), (7c) and (7d), respectively. The variable
values β corresponds to the blocked arcs, while the variable values w corresponds to the arcs
remaining in the cut δ(UG(β)). According to the objective function (9a) of the MFIP, the
total cost of the blocked arcs will be minimized, leading to the optimal solution value of the
MFBP. Moreover, when solving a MFIP, the variable values β corresponds to the arcs of the
minimum cut in the non-interdicted graph GNI(w), as explained previously. Accordingly, the
blocked arcs corresponds to the minimum cut in the non-interdicted graph GNI(w).
The same reasoning can be used to prove that given an instance of a MFBP, an optimal solution
of a MFIP can be found by solving a MCP in the non-blocked graph.

□Using Proposition 2, the next proposition provides additional complexity results for the
MFIP and the MFBP.

Proposition 3 The MFIP and the MFBP are strongly N P-hard, even if all arcs have the
same capacity.

Sketch of proof : Let q̂ ∈ Zm
+ be an interdiction cost vector where all values are identical.

Starting from an MFIP instance (G, c, q̂, Ψ), i.e, a MFIP instance where all arcs have the same
interdiction cost, we set Φ = Ψ, ra = ca and ca = q̂a for all arcs a ∈ A. Once this MFIP is
solved, the minimum cut remaining in the non-interdicted graph corresponds to an optimal
solution of a MFBP instance (G, q̂, c, Ψ), i.e, a MFBP instance where all arcs have the same
capacity. In [4], the MFIP has been shown to be strongly N P-hard even if all arcs have the
same interdiction cost. Accordingly, the MFBP is strongly N P-hard, even if all arcs have the
same capacity. Moreover, as the MFIP and the MFBP share the same decision problem, the
MFIP is also strongly N P-hard, even if all arcs have the same capacity.

□

5 Experimental results
In this section, we test the efficiency of the compact formulation. More precisely, we are
seeking to achieve the limits of Model (7). By doing so, we can determine the maximum size of
instances that can be solved to proven optimality within a fixed amount of CPU time limit of



600 seconds. For this study, we use CPLEX 12.7.0. We consider graphs, generated randomly,
with different sizes defined by the number of vertices n. For every instance, we consider three
different target flow values defined as a percentage of the maximum flow value (30%, 60% and
90%). In Figure 1, we present the computing time boxplot of c-ILP. We show in this graph, the
time spent by the formulation through the quartiles. The lines extending vertically indicate
the variability outside the upper and lower quartiles. The y-axis is the computing time and
the x-axis represents values of n. On the top part of the figure, we report for each value of
n, the total number of instances solved to proven optimality (#opt) out of the total number
of instances considered (180). This boxplot shows that the formulation manages to solve to
proven optimality graphs with up to 900 vertices within the time limit. For graphs with up to
700 vertices, c-ILP reaches an optimal solution in a very reasonable time (less than 300 seconds
for the worst case). However, it starts to face some difficulties when dealing with graphs of
1000 vertices, where ten instances remain unsolved. Subsequently, the number of instances
solved to proven optimality decreases to 18 out of 180 for n = 1400 and for larger graphs (1500
vertices), no instances have been solved to proven optimality within the time limit.

FIG. 1: Computing time boxplot of c-ILP on SYNTHETIC instances
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6 Conclusions et perspectives
In this paper, we have studied the maximum flow blocker problem. By exploiting the nature of
the problem, we derive the first compact formulation to solve it to proven optimality. We then
demonstrate a structural link between solutions of the MFBP and solutions of the MFIP. This
relationship allows us to obtain an optimal solution of one problem given an optimal solution
of the other. As a future line of research, one may actually wonder whether it is possible to
extend this result to other general network flow blocker problems.
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