
A Polynomial-Time Algorithm for Anchored Rescheduling with
Non-Availability Constraints

Pascale Bendotti12, Luca Brunod Indrigo12, Philippe Chrétienne2, Bruno Escoffier23

1 EDF R&D, 7 boulevard Gaspard Monge, 91120 Palaiseau, France
{pascale.bendotti, luca.brunod-indrigo}@edf.fr

2 Sorbonne Université, CNRS, LIP6 UMR 7606, 4 place Jussieu, 75005 Paris, France
{philippe.chretienne, bruno.escoffier}@lip6.fr

3 Institut Universitaire de France

Keywords : Anchored rescheduling, Non-availability periods.

1 Introduction
In most project scheduling applications, project data is subject to uncertainty. Unpredicted
events may cause a previously computed baseline schedule to become unfeasible. In that case,
a new schedule must be computed and should ideally remain close to the baseline schedule to
avoid potential rescheduling costs. Furthermore, efficient algorithms are needed as rescheduling
must often be done in limited time.

Anchored rescheduling consists in finding a new schedule so that a maximum number of
jobs keep their starting times close to the baseline schedule. Previously introduced anchored
rescheduling problems [2, 1] consider precedence constraints only. This work extends existing
results by providing a polynomial solution method for a rescheduling problem with precedence
constraints as well as non-availability constraints, which are essential in modelling maintenance
or breakdowns for example.

2 NA-PERT
Consider a project with a set of jobs J , processing times (pi)i∈J ∈ RJ

+ and precedence graph
G = (J, A). Every job i ∈ J in the project is given an NA-profile that is a disjoint union of
semi-open time intervals U i =

⊔mi
u=1[ai

u, bi
u) such that 0 ≤ ai

1 < bi
1 < ai

2 < bi
2 < · · · < ai

mi
<

bi
mi

< +∞. Each time interval of U i is an NA-period during which job i is not available.
As stated in [5], job non-availability can be handled by considering that job completion

times are functions of time. Following this idea, a starting time function Si : R+ → R+ and a
completion time function Ci : R+ → R+ are deduced from U i for each job i ∈ J . The value
Si(τ) is interpreted as the earliest possible starting time of job i after or at τ . The value Ci(τ)
is interpreted as the completion time of job i if it starts at Si(τ).

The results of this work hold in particular for two classical job behaviors regarding non-
availability: resumable and non-resumable. Job i satisfying the resumable execution hypothesis
means that job i may be interrupted but must resume as soon as it is available again. Job
i being non-resumable means that it must be processed without interruption. Starting and
completion time functions are illustrated in Figure 1 for a job i with processing time pi = 3
subject to two NA-periods in the resumable and non-resumable case. In Figure 1a, job i starts
at Si(τ) = τ = 1, is interrupted by the first NA-period from ai

1 = 2 to bi
1 = 3 and resumes

immediately after to end at date Ci(τ) = 5. In Figure 1b, there is not enough available time
to process job i entirely between τ = 1 and the next NA-period starting at ai

1 = 2, so job i
starts at Si(τ) = bi

1 = 3 and ends at Ci(τ) = 6.
A variant of PERT is now defined based on Si and Ci functions.

ai1 bi1 ai2 bi2

i i

Si(τ) Ci(τ)

τ

0

(a) Resumable case

ai1 bi1 ai2 bi2

i

Si(τ) Ci(τ)

τ

0

(b) Non-resumable case

FIG. 1: Examples of job scheduling

Definition 1 (NA-PERT) IU = (J, G, p, U) is an instance of NA-PERT if I = (J, G, p) is
an instance of PERT and U = (U i)i∈J is a vector of NA-profiles for the jobs of J . A vector
y ∈ RJ

+ is a schedule for IU if it satisfies the following conditions:

Si(yi) = yi for every i ∈ J (1)
yj ≥ Ci(yi) for every (i, j) ∈ A (2)

Condition (1) forces yi to be a feasible starting time for job i. Condition (2) means that,
if (i, j) ∈ A, the available time between the starting times of jobs i and j must be sufficient
to process job i entirely. Without any NA-period, condition (2) leads to the usual precedence
constraint yj ≥ yi + pi for every (i, j) ∈ A.

3 Tolerant NA-Anchored Rescheduling problem
The rescheduling problem under study writes as follows:

Problem 1 (NA-ϵ-Anchored Rescheduling) Input: An instance IU = (J, G, p, U) of
NA-PERT, a baseline schedule x ∈ RJ

+, a tolerance vector (ϵi)i∈J ∈ RJ
+.

Question: Find a schedule y of IU that maximizes |{i ∈ J | |xi − yi| ≤ ϵi}|.

The core result is that NA-ϵ-Anchored Rescheduling can be efficiently solved.

Theorem 1 NA-ϵ-Anchored Rescheduling can be solved in polynomial time.

Theorem 1 is proved by reducing NA-ϵ-Anchored Rescheduling to finding a maximum an-
tichain in an appropriate poset, which is a polynomial problem [4]. Similarly, an extension of
Theorem 1 to a weighted version of NA-ϵ-Anchored Rescheduling is possible by reducing it to
a maximum weight antichain problem, which is also a polynomial problem [3].

References
[1] Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Adèle Pass-Lanneau. An-

chored rescheduling problems under generalized precedence constraints. In International
Symposium on Combinatorial Optimization. Lecture Notes in Computer Science, volume
12176, pages 156–166. Springer, 2020.

[2] Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Alain Quilliot. Anchored
reactive and proactive solutions to the cpm-scheduling problem. European Journal of Op-
erational Research, 261(1):67–74, 2017.

[3] Kathie Cameron. Antichain sequences. Order, 2(3):249–255, 1985.

[4] Robert P Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathe-
matics, 51:161–166, 1950.

[5] Michel Minoux. Models and algorithms for robust PERT scheduling with time-dependent
task durations. Vietnam Journal of Mathematics, 35, 2007.

