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1 Introduction

The Facility Location Problem (FLP) [1] is a widely researched topic in operations research,
with applications ranging from optimal warehouse placement to coastal search and rescue
stations. It includes deterministic and stochastic variations, with the latter incorporating un-
certain parameters such as demand or cost [4]. The introduction of congestion by [2] led to the
study of Congested Facility Location Problems (CFLPs).

FLP is categorized into center, covering, and median problems based on the objective func-
tion. Center problems minimize maximum distances, covering problems maximize customer
coverage, and median problems minimize total travel or waiting times. The NP-hardness of
the p-median problem on a general graph was established by [3], prompting the use of metaheu-
ristic algorithms such as genetic algorithms, simulated annealing, and variable neighborhood
search.

This study extends the research on the p-median problem to the Multi-Server Congested
Facility Location Problem (MSCFLP), aiming to develop an efficient solution approach. In ad-
dition to FLP, the MSCFLP introduces additional factors, such as multi-servers and congestion,
addressing practical challenges. The objective is to minimize overall expected transportation
time and cumulative waiting times.

The complexity of median problems and constrained non-linear mixed integer programming
models, known for being NP-hard, is magnified in time-sensitive and dynamic scenarios such as
post-disaster emergency facility locations. Multi-server and congestion add up the complexity
and computational overhead to the problem. To address computational overhead in solving
MSCFLPs, especially in time-sensitive scenarios, this study introduces a novel multi-surrogate-
assisted method RBFN-DE. The proposed method leverage machine learning, specifically the
radial basis function (RBFN) [5], combined with differential evolution (DE) [6], to enhances
decision-making in facility location and resource allocation, improving efficiency and, providing
robust and efficient solutions for the MSCFLP.

2 Proposed Method

The proposed algorithm utilizes the DE as the primary optimizer. In each generation, three
radial basis function-based surrogate models, M1, M2, and M3, are reconstructed and upda-
ted. The algorithm starts with an initial population through Latin hypercube sampling with
objective values calculated by an actual objective function. This population is incorporated into
the training dataset T . Prior to entering the main loop, three RBFN models (M1, M2, and



M3) are established. The training dataset T is subsequently divided into three equal subsets
(T1, T2, and T3), each utilized to train the corresponding surrogate model Mi.

At the onset of each generation, all three models are updated using pseudo-fitness values.
Pseudo-fitness is determined by averaging the fitness values of the top individuals predicted
by a combination of two models. For instance, f1

avg = (f1 + f2)/2, where fi represents the
predicted fitness of the top individual of M1, and f2 is the predicted fitness value of model
M2. Similarly, f2

avg = (f2 + f3)/2 and f3
avg = (f3 + f1)/2 are calculated. These pseudo-fitness

values (f1
avg, f2

avg, f3
avg) are then employed to update M1, M2, and M3, respectively.

Following the model updates, DE-based crossover and mutation operators are applied to
generate an offspring population. For the first two generations, the entire population is evalua-
ted using the actual objective function and added to the training dataset T . From the third
generation onwards, only 10 percent of the newly generated offspring population is evaluated
by the actual function, and the remaining 90 percent is predicted by each model (M1, M2,
and M3). The predicted populations are sorted, and the top individuals are selected for the
subsequent generation. Importantly, the size of T increases in each generation.

At the end of each generation, T is shuffled and divided into T1, T2, and T3, which are then
used to reset each M1, M2, and M3, respectively. This process continues through subsequent
generations untill the stopping criteria is met, ensuring dynamic model adaptation and effective
exploration-exploitation balance.

3 Experimental Results
The parameters of DE are tuned using HalvingRandomSearchCV initially, followed by Hal-

vingGridSearchCV from scikit-learn for optimal configurations. To address imprecise demand
data in p-median problems, we created eight benchmark test instances (Node500 to Node3000).
These instances assess the performance optimization algorithms, with sizes scaling based on
node count. For instance, Node500 has 500 nodes, while Node3000 has 3000 nodes.

The experimental results demonstrated that DE obtained lower standard deviation, indi-
cating better stability in terms of objective values while, RBFN-DE maintained acceptable
stability with reliable and diverse solution capabilities. Both algorithms effectively explored
the solution space, with RBFN-DE showing computational efficiency improvements (24% to
44%) compared to DE.

Statistical tests, including ANOVA, Kruskal-Wallis, and Mann-Whitney U, found no signi-
ficant difference in objective values among algorithms. However, RBFN-DE significantly out-
performed in terms of computational time. Overall, while DE slightly excelled in objectives,
RFDE stood out in computational efficiency, making it ideal for time-sensitive optimization
tasks.
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