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1 Introduction
In this work, we are interested in robust optimization problems of the form:

min
y∈Y

f⊤y (Static-Robust)

s.t. H(ξ)y ≤ g ∀ξ ∈ Ξ

where the set Y ⊆ Rn defines the deterministic structure of solutions y and may incorporate
integrality restrictions, Ξ ⊆ Rq is a polytope, H(ξ) for ξ ∈ Ξ, f and g are real matrices
and real vectors of conforming dimensions, respectively. We assume that, all uncertain pa-
rameters are affine functions of ξ ∈ Ξ. Problem (Static-Robust) is a well-studied problem in
the literature (see [1]) and can be numerically treated using well-known reformulation tech-
niques. However, this model cannot handle situations in which the decision-maker can affect
the uncertainty set. One such situation is uncertainty reduction where the decision-maker can
undertake proactive actions in order to reduce the range of uncertain parameters expressed by
the decision-dependent uncertainty set:

Ξ(x) = {ξ ∈ Rq
+ | Dξ ≤ d, ξ ≤ v + w ◦ (e − x)}, (1)

where v, w ∈ Rq
+, x ∈ X ⊆ {0, 1}q is a binary decision vector, and e is the vector of all ones.

In this work, we study the variant of (Static-Robust) with uncertainty reduction:

min
x∈X⊆{0,1}q ,y∈Y

c⊤x + f⊤y (UR-Robust)

s.t. Ax + H(ξ)y ≤ g ∀ξ ∈ Ξ(x).

We dedicate a particular interest to the min-max combinatorial variant of the above robust
problem with binary optimization variables y and only objective uncertainty with q = n:

min
x∈X⊆{0,1}q ,y∈Y ⊆{0,1}n

max
ξ∈Ξ(x)

c⊤x + (f + ξ)⊤y. (UR-Min-Max)

2 Literature review
The first mention of decision-dependent uncertainty sets in the robust optimization literature
dates back to [8] where the authors use its expressive power to better model the application
at hand, specifically, a software partitioning problem involving multiple instantiations. The
notion has also been used by [6, 7], who show how the use of decision-dependent budgets
can reduce the conservatism of the so-called budgeted uncertainty set [3], sometimes at no



extra computational cost. In yet another context, [4] rely on decision-dependent uncertainty
sets to model K-adaptable policies, wherein variables x allow to partition set Ξ optimally.
The authors of [5] introduce the uncertainty reduction model (UR-Robust), for which they
propose different formulations as well as detailed numerical experiments that illustrate the
possible impact of uncertainty reduction. They additionally consider MILP reformulations
and a hardness proof for robust optimization problems with a more general decision-dependent
uncertainty set structure.

3 Methodological development and results
We first consider the more general model (UR-Robust) for which we propose a new refor-
mulation in the case where D ≥ 0, which does not involve big-M coefficients whenever y is
binary. Our main result shows that when X = {0, 1}q, solving (UR-Min-Max) amounts to
solving n + 1 deterministic optimization problems in the form miny∈Y f̃⊤y in line with the
seminal result of [2], and, in particular, that (UR-Min-Max) is polynomially solvable whenever
the deterministic problem is for any f̃ ∈ Rn. We complement that positive result by showing
hat (UR-Min-Max) remains NP-Hard when a general set X ⊆ {0, 1}q is considered (thereby
echoing the results of [5] even when the decision-dependence is restricted to the special case of
uncertainty reduction). Finally, we numerically illustrate our theoretical results on the shortest
path instances described by [5] and compare it to the reformulations proposed therein.

4 Conclusions et perspectives
The results proposed in this work are a first step in the right direction for incorporating decision-
dependent uncertainty sets in robust optimization. These have a wide range of applications
but have not yet been methodologically explored in the literature. Future work may consider
extending the favorable complexity results to more generic problems as well as algorithmic
development for NP-Complete variants.
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