
Graph Neural Networks as Value Heuristic in Scheduling
Problems

Tim Luchterhand, Emmanuel Hebrard, Sylvie Thiébaux
Laboratoire d’analyse et d’architecture des systèmes (LAAS) Toulouse, France

{tim.luchterhand, hebrard, sylvie.thiebaux}@laas.fr

Keywords : scheduling, graph neural networks, heuristics, tree-search

1 Introduction

Scheduling problems frequently occur in real-life applications such as manufacturing tasks or
time tabling problems. The goal is to find a schedule with minimum execution time (the so
called makespan) while respecting precedence constraints imposed by the user and / or resource
constraints. Algorithms that solve these kind of problems are usually based on a tree search
or more specifically a branch and bound search. These methods guarantee to find the optimal
solution by intelligently exploring an exponentially large search space. Since in many real-world
problems this search space becomes prohibitively large, the performance of such algorithms is
heavily dependent on a good search strategy that dictates which parts of the search space to
explore first. This is where heuristics come in.

Graph neural networks (GNNs) are a special type of neural network that operate on graph
structured data. In their most general form they take a graph annotated with arbitrary fea-
tures, e.g. real valued feature vectors on the nodes and edges, and transform those features
through learnable functions and a message passing scheme [1]. Thus, they can be used to
predict scores for nodes in the graph or relationships between them. In particular, GNNs seem
perfectly adapted to make predictions about combinatorial optimization problems which often
exhibit a graph structure. Recently there have been multiple publications on GNNs used in
conjunction with classical solvers for discrete optimization problems like SAT or (mixed) inte-
ger linear programming (MILP) [3, 4]. We propose to extend these ideas and to apply them
to scheduling problems like the Job-Shop or resource constrained project scheduling problems
(RCPSP). Specifically, we seek to implement a GNN based value branching heuristic for a SAT
based scheduler, i.e. a heuristic that takes binary branching decisions during the search and
seeks to quickly guide the solver to good solutions.

2 General Framework and GNN Architecture

We represent an RCPSP as a graph G = (V, E, V, E, U) consisting of task nodes V with
corresponding features t ∈ V, edges E with features e ∈ E and additionally resources r ∈ R
annotated with features u ∈ U. The graph G then consists of multiple fully connected sub-
graphs, one for each resource r. These sub-graphs are connected to each other if there exist
tasks that consume more than one resource. An example graph is given in fig. 1. The GNN
then transforms a graph G to a graph G′ = (V, E, V′, E′, U′), i.e. the topology of G remains
the same while the features are transformed via a message passing scheme inspired by [1]. The
input features of G describe the problem instance. For example, task features could include
the minimum and maximum execution time of a task, edge features could contain precedence
information specified by the user and finally, resource features could represent the capacity of
a resource. But in general any type of real valued feature can be added to the feature vectors.

u1

t1

e23, e32

e13, e31

e12, e21

t2

u2

t3

e34,e43

t4

FIG. 1: Representation of an RCPSP as
graph. Tasks that share a resource form
a fully connected sub-graph. Tasks, edges
and resource "bubbles" are annotated with
task, edge and resource features respec-
tively.

500600700800900
102

103

104

37618
18579

10754

objective

#
ch

oi
ce

s
m

ad
e lexicographical

solution guided
GNN

FIG. 2: Heuristic performance on an Open-
Shop problem instance. The solver needs
to make significantly less choices to ar-
rive at the optimal solution when using the
GNN based heuristic.

The features of the output graph G′ on the other hand can then be used to derive the actual
heuristic. In our case, the solver needs to take binary decisions for pairs of edges between two
tasks t1 and t2, i.e. whether t1 should be scheduled before t2 or vice-versa. Consequently, we
are currently predicting a Bernoulli distribution for edge pairs between tasks t1 and t2 that
indicates which ordering is more likely. But the flexibility of the proposed GNN architecture
allows for all kinds of outputs. For example, the GNN could also predict a scalar value for
each task node that is then used to directly construct an ordering.

Training of the GNN is done in a supervised manner. We solve a number of scheduling
problems using the solver and then extract the edge directions (i.e. the labels for the training)
from the optimal solution. Additionally, we also include critical intermediate states of the
search, i.e. subproblems encountered during the search, in the dataset. The label generation
for the latter is more involved since the best solution corresponding to a given subproblem is
not necessarily the global optimum. During evaluation, the solver can then query the GNN
by constructing the graph G from the current state of the search and then extract the edge
probabilities from the output.

3 Perspectives
First results on Job-Shop problems seem promising: the solver using the GNN expands signif-
icantly fewer nodes during search than solution guided search [2] (see fig. 2). However, this is
only the first step as a couple of open points remain. The inference is currently too slow for
the GNN to be queried at every decision of the solver. Additionally, we want to experiment
with different input features, different input graph representations as well as different GNN
outputs and thus heuristic types.

References
[1] Peter W. Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.

In: (June 2018). arXiv: 1806.01261 [cs.LG].
[2] J. C. Beck. “Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling”.

In: Journal of Artificial Intelligence Research 29 (May 2007), pp. 49–77. issn: 1076-9757.
[3] Maxime Gasse et al. “Exact Combinatorial Optimization with Graph Convolutional Neu-

ral Networks”. In: (June 2019). arXiv: 1906.01629 [cs.LG].
[4] Elias B. Khalil, Christopher Morris, and Andrea Lodi. “MIP-GNN: A Data-Driven Frame-

work for Guiding Combinatorial Solvers”. In: Proceedings of the AAAI Conference on Ar-
tificial Intelligence 36.9 (June 2022), pp. 10219–10227. doi: 10.1609/aaai.v36i9.21262.

