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1 Introduction
Combinatorial optimization is at the heart of many real-world problems. It consists in find-
ing the ”best" out of a finite, but prohibitively large, set of options. Column generation is
an iterative method that was developed to solve this kind of difficult mathematical problems,
such as linear formulations where the problem may be too large to consider all options ex-
plicitly. In this work, we present a complete hybrid classical-quantum algorithm involving a
quantum sampler based on neutral atom platforms. This approach is inspired by classical
column generation frameworks developed in the field of Operations Research and shows how
quantum procedures can assist classical solvers in addressing hard combinatorial problems. We
benchmark our method on the Minimum Vertex Coloring problem and show that the proposed
hybrid quantum-classical column generation algorithm can yield good solutions in relatively
few iterations. This presentations is based on previous our work [1].

2 Methodology
As previously discussed, solving the pricing sub-problems is usually the bottleneck in column
generation-based algorithms since it comes to solving different instances of a hard combinatorial
problem multiple times. To overcome this problem, we propose a quantum pricing algorithm
that can find the (near-) optimal solution faster than the classical one (i.e., where no QPU
is involved). For this purpose, let us now describe the column generation-based framework
proposed to solve the Minimum Vertex Coloring problem.

First, a minimal sub-set S′ ⊆ S of independent sets is generated in such a way that it
ensures a feasible solution for the extended formulation foe-cei. As previously discussed, the
most trivial way to build the initial set S′ of independent sets is generating only the singletons
in the graph; this simple approach always provides a solution for the RMP.

The classical part of the proposed hybrid approach is related to the Restricted Master. Once
the initial set S′ is created, the RMP is built and then solved on its linear relaxation form (see
formulation rfoe-rce) by a classical solver (e.g., GPLK). The values of the dual variables are
also given by the classical solver by running a built-routine after solving each version of the
RMP (i.e., with different sub-sets of variables).

The next steps are related to the pricing sub-problems, in which the PSP is solved by applying
the values of the related dual variables from the solved RMP. As previously discussed, this step
comes to finding independent sets whose weight is strictly greater than 1. If such elements exist,
then they are added to S′. As we detail in the following, we propose a quantum sampler that is
specifically tailored to output multiple independent under the aforementioned conditions For
each new independent set found by solving the related pricing sub-problem, a new variable is
created and added to the sub-set S′. Then, the RMP is solved again with the new columns



(i.e., independent sets converted into variables). These last steps are repeated until no column
is generated by the PSP. Finally, the final RMP is solved with all generated variables (i.e.
independent sets) with the integrality constraints cei, as previously discussed.

3 Numerical Results
We compared the number of iterations needed to be run on different graph classes, orders,
and densities by applying different approaches: Classical Column Generation (CG), Greedy
CG, SA CG, Noiseless Quantum CG, Classical Greedy, and Quantum Greedy. We applied
the AIPR-HDR strategy for redesigning each pricing sub-problem within the Quantum CG
framework. While this indicator refers to how many times the PSP was solved within both
classical and quantum column generation frameworks for coloring a given graph, it indicates
how many independent sets were generated during the while-loop on proposed algorithm by
using both classical and quantum methods as previously discussed. First, we observe that
the Quantum Greedy approach has the same overall performance as its classical counterpart,
showing that our quantum sampler can solve the Maximum Independent Set problem efficiently.
Also, both strategies have the same linear behavior related to the size of the graph, i.e., the
number of edges it contains, being most impacted by dense graphs. This behavior is expected
since the size of each independent set gets smaller as the set of edges gets larger. Hence,
more iterations have, in general, to be done to cover all vertices of a dense graph. Also, while
outperforming the Classical CG approach on almost every graph class (in terms of the number
of iterations), both Classical and Quantum Greedy algorithms had their performance slightly
decreased on UD graphs. Finally, taking advantage of the related superposition aspect, the
proposed Quantum CG outperformed all other approaches on all graph classes. For instance,
while the Quantum CG algorithm needed less than 4 (resp. 6) sampling iterations for all
sparse and dense (resp. 0.5-density) non-UD graphs, Quantum and Classical Greedy approaches
(resp. Classical CG algorithm) needed up to 10 (resp. 12) pricing interactions to solve the same
graph class.

First, we observed that our proposed Quantum CG approach has the best overall perfor-
mance. Indeed, it could find the optimal solution in almost all instances; our approach could
not find the best solution only for some 13-vertex non-UD graphs. Also, unlike all other ap-
proaches, the Quantum CG is not impacted by the graph class; while the Classical CG could
better perform on dense graphs, both Classical and Quantum Greedy approaches are more
stable on UD graphs. Also, the proposed Quantum CG algorithm could reduce the average
gap on 12-vertex non-UD (resp. 13-vertex UD) graphs from roughly 19% (resp. 11%) to 0%
when compared to the Quantum Greedy (resp. Classical CG) approach.

4 Concluding remarks
Our proposed quantum pricing-based approach also outperformed both stochastic classical
approaches in most of the instances, especially those related to UD and sparse graphs. Even
though the quality of the solutions remains the same. The Noiseless Quantum CG could reduce
by 50% the number of iterations on sparse graphs when compared to SA-based pricing. Even
though the Greedy CG has fewer pricing iterations on some graph classes, as in bigger non-
UD graphs with 20% and 50% of density the average gap could be reduced by 80% when our
proposed Quantum CG was applied on the same graph classes. This indicates that random
sampling to find independent sets cannot solve pricing sub-problems effectively.
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