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1 Introduction

In this study, we address the scheduling problem associated with charging electric vehicles at
a public charging station with the objective of maximizing energy delivery. The configuration
considered aligns with that presented in [2]. The charging station is equipped with m points
(CPs), each denoted as CP i (where i = 1, . . . , m), capable of being toggled on and off during
charging, featuring a specific output capacity of wi (kW). The maximum power supply for the
station is restricted to wG (kW), rendering it infeasible to operate all chargers simultaneously.
The study focuses on a one-day timeframe, divided into time slots of length τ .

Charging demands, represented by J = {J1, . . . , Jn}, are characterized by arrival time rj ,
departure time dj , initial state-of-charge e0

j , desired state-of-charge at departure ef
j , and vehicle

battery capacity Bj . Each demand corresponds to a vehicle, and each vehicle occupies a charger
for its entire charging duration. Charging commences at a specific time on one charger at sj

(rj ≤ sj < dj), without interruption.
Our goal is to find a schedule for these demands to achieve the desired charge levels, ac-

counting for the constraints imposed by the limited number of chargers and the station’s power
capacity. The objective is to minimize the total difference between the desired and final charge
levels.

2 The proposed method

Our methodology employs a bi-level optimization strategy. In the initial phase, we utilize the
tabu search algorithm to ascertain the assignment of demands to chargers. Subsequently, in
the second phase, we focus on determining the power allocation for each accepted demand
within each time slot during the plugging time.

Assignment: A solution is represented by matrix M and vector S. Matrix M (with m + 1
rows) denotes chargers and rejected demands, where each row i (i = 1, . . . , m) contains sorted
demands J i ⊆ J assigned to charger i. Vector S (size n) signifies the plugging time for accepted
demands. For consecutive demands j and j′ on charger i with due dates dj and dj′ (dj < dj′),
plugging time sj′ = max(dj , rj′) optimizes charger utilization by ensuring timely plugging.

Power allocation: After assigning demands, the next step is determining electric power
distribution for each charger and time slot.



sc 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|J | 47 49 58 65 50 57 52 67 51 53 39 39 36 32 38
TS 0.55 0.51 0.48 0.68 0.54 0.54 0.42 0.7 0.41 0.78 0.34 0.4 0.34 0.21 0.29
SA 1.71 2.24 1.18 2.37 1.63 2.64 1.3 3.65 1.25 2.76 0.78 0.9 0.63 0.38 0.58

TAB. 1: Comparison of the results of the heuristics and meta-heuristics with m = 20.

We use an MILP model with continuous parameters ejt for each demand j and time slot t.
Here, ejt is wi if demand j is assigned to charger i during sj ≤ t < dj , and 0 otherwise. The set
V identifies time slots where energy demand surpasses station capacity (V = t|

∑n
j=1 ejt > WG).

Binary variables yjt indicate whether demand j charges at time slot t.
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yjt ∈ {0, 1} ∀j ∈ S, t ∈ T (4)
Objective function (1) measures the difference between requested and obtained state-of-

charge levels for accepted demands. Constraints (2) prevent exceeding requested energy levels
for each accepted demand, and constraints (3) cap the total output power during peak time
slots at the charging station limit.

2.1 Tabu search algorithm with LP models
The Tabu Search (TS) algorithm, introduced by [1], mitigates local optima by allowing non-
improving moves. TS starts with a feasible initial solution, iteratively refining it by exploring a
solution set around the current one. The neighborhood consists of feasible solutions achievable
through simple moves. At each iteration, neighboring solutions are generated, evaluated based
on the objective function, and the current solution is moved to the best neighbor, even if it
worsens the objective value. The move is added to the tabu list to prevent revisits and cycling.
The algorithm stops on meeting a predefined criterion, returning the best solution found.

The move involves a tuple (i, j), with i as the machine index and j as the selected demand
index. The algorithm shifts demand j from its current charger i to another charger, specifically
charger h within solution M .

We present results for 20 chargers and a demand range of 32 to 67 in Tab. 2.1, comparing
our method with the simulated annealing approach from [2]. The superiority of our method is
evident in the obtained results.
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