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1 Introduction
The prevalence of ride-sharing services presents a fundamental trade-off between the ope-

rational costs and the users’ convenience. While ride-sharing operations reduce operational
costs, users may experience certain inconveniences, such as longer ride times when sharing their
rides with others. Along with the development of ride-sharing services, the emergence of new
techniques, such as electric vehicles and autonomous techniques, has drawn academic interests
in operations research to apply a more eco-friendly and comfortable mode of transport. The
Electric Autonomous Dial-A-Ride Problem (the E-ADARP) was first introduced by [1], which
consists in designing a set of minimum-cost routes for a fleet of electric autonomous vehicles
(EAVs) by scheduling them to provide ride-sharing services for users specifying their origins
and destinations. In this work, we emphasize the conflicting interests of service providers and
users in the objective function of the E-ADARP and investigate the Bi-objective E-ADARP
(hereafter BO-EADARP). The two objectives of the BO-EADARP are the total travel time of
all vehicles and the total excess user ride time of all users. We apply the ϵ-constraint method
and the generalized B&P algorithm to solve the BO-EADARP. Numerical results with regard
to different methods are summarized, as well as the managerial insights that we observe from
the obtained efficient solutions.

2 The BO-EADARP and the bi-objective B&P algorithm
The problem is defined on a complete directed graph G = (V, A), where V represents the

set of vertices and A = {(i, j) : i, j ∈ V, i ̸= j} the set of arcs. V can be further partitioned
into several subsets, i.e., V = P ∪ D ∪ S ∪ O ∪ F . P and D represent the set of all pickup
and drop-off vertices, S is the set of recharging stations, and O and F denote the set of origin
depots and destination depots, respectively. Each user request is a pair (i, n + i) for i ∈ P and
has a maximum user ride time of mi. The travel time on each arc (i, j) ∈ A is denoted as ti,j .
Detailed MIP formulation of the E-ADARP can be found in [1]. The two objectives are :

min
∑

i,j∈V

ti,jx
k
i,j (1)

min
∑
i∈P

Ri (2)



where xk
i,j is a binary decision variable which denotes whether vehicle k travels from node i

to j. Ri denotes the excess user ride time of request i ∈ P and is formulated as the difference
between the actual ride time and direct travel time from i to n + i.

2.1 Bi-objective branch-and-price (BOBP) algorithm
The principle of the bi-objective B&P is extended from the single-objective B&P ([3]), which

aims to divide the original problem into easier subproblems and store them in the form of
“nodes". We denote each subproblem of the BO-EADARP as P (η), where η represents the
associated node. The main ingredients of the bi-objective B&P are presented as follows :

1. Calculate lower bound set and update upper bound set : On each node, we
calculate the lower bound set with the dichotomic method, where we apply the CG
algorithm presented in [3] to solve each weighted-sum objective problem. Once the lower
bound set of the analyzed node η (denoted as L(η)) is calculated, we first check if new
non-dominated points are obtained. If this is the case, the upper bound set U is updated.

2. Lower bound filtering and node fathoming : Then, the lower bounds in the set
are filtered with the current upper bound set U , which stores each candidate point that
corresponds to the integer solution that is not dominated by other points in the set. The
filtering process compares the current L(η) with U and returns a set of non-dominated
portions. If no portion is generated after the filtering process, then the analyzed node η
can be fathomed, as it is fully dominated by the current upper bound set U .

3. Branching procedure : If the analyzed node cannot be fathomed, branching is applied
to generate child nodes. We consider different of branching strategies and apply them to
each disjoint non-dominated portion. After branching, a set of child nodes is added to the
unprocessed node set T . The tree search terminates when there is no unprocessed node
remaining in T .

3 Numerical Experiments and Discussion
In this work, we solve the BO-EADARP, where the total travel time and the total excess

user ride time are considered as separate objectives. To tackle the BO-EADARP, we introduce
the BOBP algorithm based on the framework of [2], where the lower bound set is calculated
by the CG algorithm ([3]). In the computational experiments, the BOBP algorithm is shown
to be more efficient and generate more efficient solutions in a less average computational
time, compared with the classic ϵ-constraint method. Then, we analyze the obtained efficient
solutions, which offer the following managerial insights for different service providers : (1) for
profitable service providers, it is possible to significantly improve service quality while keeping
near-optimal operational costs ; (2) for non-profitable service providers, there exist efficient
solutions of high service quality while at lower operational costs. These efficient solutions are
very interesting for this kind of service provider. To sum up, the obtained efficient solutions can
help decision-makers select Pareto-optimal transportation plans according to their priorities
and preferences.
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