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1 Introduction
In [2], we have developed heuristics for load scheduling in energy communities. This work assumes a
centralized decision maker assigns optimal decision to the community members. Besides the computa-
tional issue, this management approach faces the social acceptance issue. We have, therefore, started as
in [1] to study how to efficiently decentralize this decision process. Instead of dictating schedules, the
centralized authority (Community Coordinator, CC) would merely provide some incentives to demand a
response from the members to achieve a given objective, knowing the members do not directly interact.

1.1 Description
We consider a community of N members with different asset possession characteristics, as presented
in Figure 1. Producers can store and exchange their energy surplus with other members through the
coordinator or the primary grid. No additional links exist between members; CC is the intermediary
between members, disseminating information. The members remain connected to the main grid and
collect energy when needed. We aim to provide a decentralized model that incentivizes the consumption
of the local generation in the community as much as possible.

Figure 1: Community’s presentation.

2 Allocation keys
As there are no direct links between the members, each member determines their local schedules and
sends information about energy needs and availability to the CC. The latter determines the allocation
keys (the maximum periodic amount of energy each member can draw from the community) and sends
them to members, who adjust their decisions according to this information to maximize their gain. The
notion of allocation key is used in practice to share the economic gain among community members at
the end of a given period. We adapt this notion to ensure the proactive management of the community.
We calculate the allocation keys in different ways:

• Key K1: It is a calculation method based on the total periodic energy consumption and availability.
This iterative method allows fair energy allocation among members.

1



• Key K2: consists of determining the candidates for the energy reception and then sharing (uni-
formly) the power between these members, and iteratively update the allocation according to
members reactions. A candidate is a member who does not inject energy.

• Key K3: is a combination of K1 and K2.

• Keys K4 and K5 respectively share energy in prorate to consumption and investment in generation
and/or storage tools.

3 Experimental Results
We conduct experiments on some realistic instances built with data collected from Smart Lou Quila
over one month sliced into 30 minutes. We use the MILP in [2] to solve the scheduling problem of each
member with time_limit = 50s per member. And compare the solutions for the a priori and a posteriori
management. Table 1 presents the solutions, where column obj is the total amount of power collected
from the main grid. Column Available is the total amount of energy that can be shared in the planning
horizon, and Loss is the share of Available that goes to the main grid.

A posteriori A priori
Key obj kWh Available kWh Loss kWh obj kWh Available kWh Loss kWh
K1 4240.87 846.11 409.52 4153.15 714.77 303.78
K2 4194.44 846.11 363.83 4063.07 714.77 205.14
K3 4209.16 846.11 380.75 4133.72 714.77 285.91
K4 4198.4 846.11 367.22 4079.30 714.77 225.87
K5 4369.30 846.11 538.13 4234.52 714.77 378.83

Table 1: Key comparison.

We notice that key K2 returns the best solution in the a priori and a posteriori management.
Further, we compare the solutions of the centralized and distributed approaches. We report the amount
of energy collected from the main grid for each approach in Table 2. The column gap presents the gap
between distributed and centralized solutions.

Horizon Centralized optimal value kWh Distributed solution kWh gap %
August 2021 3867.88 4063.07 5.04
February 2023 7422.74 7433.97 0.15
August 2023 7159.68 7196.06 0.51
September 2023 6781.69 6803.74 0.32

Table 2: Solutions’ quality.

The average gap between the centralized and decentralized solutions is 1.51% for the experiments
carried out.

4 Conclusion
We have proposed an efficient management process where members build their schedules according to
incentives sent by the centralized authority. That management process is easily implementable; it will
be even easier in a community where everything is smart.
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