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1 Introduction
Chance-Constrained Stochastic Programs (CCSPs) play a crucial role in decision-making under uncer-
tainty, offering a framework for finding optimal solutions while considering the probability of constraint
violation. Originating from the seminal work of Charnes and Cooper, CCSPs have found applications
in diverse domains such as power systems, vehicle routing, finance, and contextual optimization.

In this paper, we delve into the realm of CCSPs with finite support, addressing the challenge of
efficiently solving these complex problems. Our focus lies in developing an adaptive partitioning
method (APM) inspired by previous works, such as [2] and [3]. The proposed APM is designed to find
optimal solutions to CCSPs with finite support after a finite number of iterations. The key contribution
of our work lies in how the APM is extended for solving CCSPs, which is not straightforward due to the
inherent combinatorial structure of chance constraints. A complete redesign of the APM components
is necessary in this case.

The suggested methodology is formulated to be applicable irrespective of the specific structure of the
chance constraint. In other words, it is capable of handling both single and joint chance constraints.
Furthermore, if linear CCSPs are considered, the proposed method functions regardless of whether
the chance constraint involves uncertainty on the right-hand side or the left-hand side.

2 Problem Statement
CCSPs involve determining the optimal value of a decision variable, subject to constraints influenced
by uncertain parameters. We want to obtain the optimal value of a decision variable x ∈ X ⊆ Rn

that minimizes the objective function f : X → R. This decision variable has to be contained by
a set X that depends on an uncertain parameter ξ ∈ Ξ with a probability of (1 − τ). Here, the
parameter τ ∈ [0, 1] represents the risk tolerance of the decision-maker. The generic CCSP reads

v∗ = min
x∈X

f(x) (1a)

s.t. Pξ[x ∈ X(ξ)] ≥ 1− τ. (1b)
More specifically, we focus on CCSPs whose uncertain parameters ξ ∈ Ξ have finite support. The

uncertain parameters belong to the set Ξ := {ξs : s ∈ S} where each ξs ∈ Rd is a multi-dimensional
vector representing a single realization of the uncertain parameters with probability qs and S is a set of
scenarios. By introducing a binary variable zs ∈ {0, 1} for each s ∈ S, Model (1) can be reformulated,
see, e.g., [1],

v∗ = min
x∈X

f(x) (2a)

s.t. zs = 1(x ∈ Xs), s ∈ S, (2b)∑
s∈S

qszs ≥ 1− τ, (2c)

zs ∈ {0, 1}. s ∈ S (2d)
In Model (2), 1 is the indicator function, and Xs = X(ξs) is the set of feasible decisions for realiza-
tion ξs.



3 Adaptive Partitioning Method
Our approach is based on creating partitions of the scenarios set.

Definition 1 A partition P =
{

p1, p2, . . . , p|P |
}

is a collection of non-empty subsets of the scenario
set S such that

⋃
p∈P p = S and pi ∪ pj = ∅, for all pi, pj ∈ P .

By encapsulating scenarios in a subset p ∈ P , a smaller-size chance-constrained problems is proposed
in [1]. In this reduced CCSP each subset p ∈ P represents a unique scenario and the feasible set
for p ∈ P is Xp =

⋂
s∈p Xs. We use this reduced CCSP as a component of the proposed APM, it

reads

vL(P ) = min
x∈X

f(x) (3a)

s.t. zp = 1(x ∈ Xp), p ∈ P, (3b)∑
p∈P

qpzp ≥
∑
p∈P

qp − τ, (3c)

zp ∈ {0, 1}, p ∈ P, (3d)

where for each subset p ∈ P the probability qp = mins∈p qs. In Model (3) no constraint aggregation
is carried out. In fact, Model (3) has as many constraints as Model (2). Nevertheless, Model (3)
features |P | binary variables, indicating that it requires fewer computations to solve compared to
Model (2), which utilizes |S| binary variables.

Proposition 1 (from [1]) The partitioned model (3) is a relaxation of the CCSP (2), i.e.,

v∗ ≥ vL(P ).

The concept behind the APM involves an iterative adjustment of a partition, denoted as P j . The
objective is to modify P j in a way that in each subsequent iteration of the APM, a strictly increasing
lower bound value, vL(P ), is achieved. This iterative process continues until a feasible solution of the
model is attained, or the calculated optimality gap meets a predefined threshold parameter, ε. The
general procedure of the APM is outlined in Algorithm 1, consisting of three key steps: lower bound
computation, upper bound computation, and the modification of P j . As long as |P j | increases over
the course of the iterations, Algorithm 1 terminates in a finite number of iterations and recovers the
optimal solution of Model (2).

Algorithm 1: Adaptive Partitioning Method.
Input: scenario set S, stopping criterion ε ∈ (0, 1).
Output: optimal solution x∗ of Model (2).
Initialize: j ← 0, vU ← +∞, vL ← −∞.

1 Design the first partition P 0.
2 while (vU − vL)/vU ≥ ε do
3 Find x

¯
j , the solution of Model (3) for the partition P j .

4 if v(x
¯

j) > vL then set xL ← x
¯

j and vL ← v(x
¯

j).
5 Find x̄j by projecting x

¯
j in the feasible set of Model (3).

6 if v(x̄j) < vU then set xU ← x̄j and vU ← v(x̄j).
7 Modify P j to obtain a new partition P j+1.
8 Increment iteration j ← j + 1.
9 end

10 return xU
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