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1 Balancing workload minimizes the makespan for free
Let G = (U, W, E) be a bipartite graph. Assume given non-negative real numbers du for u ∈ U .
Let X := {x ∈ RE

⩾0 :
∑

e∈δ(u) xe = du ∀u ∈ U}. Here, δ(v) denotes the edges incident to a
vertex v. For x ∈ X, denote by ℓmax(x) (resp. ℓmin(x)) the quantity maxw∈W

∑
e∈δ(w) xe (resp.

minw∈W
∑

e∈δ(w) xe). Then we have this fact, which might look surprising at first glance.

Proposition 1 Over X, every x minimizing ℓmax(·)−ℓmin(·) minimizes ℓmax(·) and maximizes
ℓmin(·).

What might make it counter-intuitive is that a same solution optimizes three criteria at the
same time, while these criteria do not share the same monotonicity. An application is the
following. Let U be tasks to be performed, W be workers, and du be the total time to be spent
on performing task u (“demand”). Each worker w can only work on a subset of the tasks (the
neighborhood of w in G). Given x ∈ X, the quantity xe is the time spent by the endpoint in W
on performing the endpoint in U . With this interpretation,

∑
e∈δ(w) xe is the total time worked

by w ∈ W (“load”), and ℓmax(x) (resp. ℓmin(x)) is the maximal (resp. minimal) time worked
among the workers. The proposition above translates into: If you minimize the difference of
working times between the most loaded worker and the least loaded one, then you also minimize
the load of the most loaded one and maximize the load of the least loaded one. In the case where
the workers work in parallel and they do not stop working until they are done with their load,
there is another interpretation: If you minimize the difference of working times between the
most loaded worker and the least loaded, then you also minimize the makespan. (We remind the
reader that the makespan is a standard criterion from industrial engineering, defined as the
duration of a project, from its beginning to its end.)

Proposition 1 can easily be derived from standard results on lexicographically optimal bases
of polymatroids (which go back to the works of Meggido [4] and Fujishighe [2]). For such
results, the polymatroid structure looks crucial. Maybe more surprising is the fact that the
proposition still holds if d takes integer values, and X is restricted to integer points; this is then
a consequence of a recent theorem by Frank and Murota [1]. Special cases were obtained before;
see, e.g., the work by Harvey et al. [3], which finds its motivation in load balancing as well.

2 Contributions
In the present work, we show that Proposition 1 above can be kept even without the structure
of a polymatroid. Assume given in addition vectors av ∈ Rδ(v)

>0 attached to the vertices v of G.



For a point x and a subset A of its indices, we denote by xA the vector (xi)i∈A. We change now
the definition of X to Xa := {x ∈ RE

⩾0 : au · xδ(u) = du ∀u ∈ U} and the definition of ℓmax(x)
and ℓmin(x) to ℓmax(x) := maxw∈W aw · xδ(w) and ℓmin(x) := minw∈W aw · xδ(w). The starting
setting is the special case when av is the all-one vector. Our first result is the following.

Theorem 1 Suppose ℓmax(x) > ℓmin(x) for all x ∈ Xa. Then over Xa, every x minimizing
ℓmax(·) − ℓmin(·) minimizes ℓmax(·) and maximizes ℓmin(·).

By compactness, the existence of x ∈ Xa minimizing ℓmax(·) − ℓmin(·) is ensured as soon as
Xa is non-empty. Theorem 1 is a generalization of Proposition 1, apart for unfortunate inputs
where it is possible to have the quantities aw · xδ(w) equal for all w ∈ W (“it is possible to get
all workers equally loaded”), something which is not expected to occur generically. There are
actually examples showing that this condition is necessary. (Anyway, when it is possible to
have the quantities aw · xδ(w) equal for all w ∈ W , then Proposition 1 is immediate.) There are
also examples showing that the theorem does not hold when d takes integer values and Xa is
restricted to integer points.

Our second result shows that when the non-negativity constraint is dropped, we get somehow
the reverse situation where minimizing ℓmax(·) or maximizing ℓmin(·) actually minimizes ℓmax(·)−
ℓmin(·). In this case, we are able to consider even more general dependencies of the loads to
the values xuw. Assume given maps fv : Rδ(v) → R attached to the vertices v of G. We
extend the definitions of ℓmax(·) and ℓmin(·) to ℓmax(x) := maxw∈W fw(xδ(w)) and ℓmin(x) :=
minw∈W fw(xδ(w)). Let Xf := {x ∈ RE : fu(xδ(u)) = du ∀u ∈ U}. Note that, contrary to what
holds for X and Xa, the x are not constrained to have non-negative components.

Let A be a finite set. To ease the statement of the theorem, we define a certain set FA of
maps RA → R. A map f : xA ∈ RA 7→ f(xA) ∈ R belongs to FA if it is a continuous increasing
self-bijection of R when restricted to any component xi (the components of xA\{i} being then
fixed). Linear maps xA 7→ a · xA with a ∈ RA

>0, as in Theorem 1, belong to FA. Moreover, the
set FA is stable by many binary operations (e.g., addition and maximum), which shows that it
actually contains quite complicated maps.

Theorem 2 Suppose that each fv belongs to Fδ(v) and that G is connected. Then, for every
x ∈ Xf such that ℓmax(x) > ℓmin(x), there exists x′ ∈ Xf such that ℓmax(x) > ℓmax(x′) =
ℓmin(x′) > ℓmin(x).

When we specialize the maps fv to xδ(v) 7→ av · xδ(v) with av ∈ Rδ(v)
>0 , we are exactly in the

setting of Theorem 1, except for the non-negativity constraint. Theorem 2 implies in particular
that if there exists x ∈ Xf minimizing ℓmax(x), then this x is such that ℓmax(x) = ℓmin(x).
This is thus the opposite phenomenon as that of Theorem 1. Besides, even if Xf is non-empty
as soon as no vertex in U is isolated, the infimum of ℓmax(x) over Xf is actually not necessarily
attained, as some easy examples show.
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