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1 Introduction
In the context of telecommunication networks, a Service Function Chain (SFC) can be seen as
an origin-destination traffic demand with some additional requirements. These requirements
manifest as a predefined sequence of Network Functions (NF) which must be visited (in the
specified order) along the SFCs origin-destination route. Typical examples of NFs include
firewalls, video optimizers, load balancers, and parental control.

The virtualization of NFs enables on-demand execution of a NF within a virtual server, dis-
sociating it from any dedicated hardware. Although this virtualization implies more flexibility
and significant cost reductions for the service providers, it also creates an operational challenge
as Virtual Network Function (VNF) are more prone to failures when compared to legacy ded-
icated hardware. To make things worse, if a single VNF goes down, the whole service chain
is impacted. Moreover, new 5G use-cases (e.g., communication between autonomous vehicles,
e-health applications, data manipulation within smart factories and smart cities) are part of
the so-called Ultra-Reliable Low-Latency Communication (URLLC) services, which require
strict levels of end-to-end availability. For this reason, backup VNFs must be placed on the
network so that the services can still be ensured even in case of node failures. Since the place-
ment of backup network functions incurs extra costs, a substantial challenge for infrastructure
and service providers such as Orange is therefore to efficiently decide the how to place VNFs
throughout the network so that a given set of SFCs can achieve the required availability levels.

2 Problem definition
We next define the Availability-aware Service Function Chain Routing (ASFCR) problem. We
are given a directed, loopless, connected graph G = (V, A) representing the telecommunication
network, where each node v ∈ V has a capacity Cv ∈ R+, and an availability 0 < Av < 1, (i.e.,
a risk of 1 − Av of being unavailable). Moreover, let F be the set of Virtual Network Function
(VNF) types, where each VNF f ∈ F has a resource consumption Rf ∈ R+, and a placement
cost P f

v ∈ R+ for each node v ∈ V . Finally, let K be the set of SFC demands to be routed,
where each demand k ∈ K is defined by (i) an origin ok ∈ V and a destination dk ∈ V , (ii) a
bandwidth Bk ∈ R+, (iii) a required availability Ak ∈ [0, 1], and (iv) an ordered set of distinct
VNFs F k ⊆ F that must be visited.

The availability of a path π routing a given SFC is defined as the probability that all its
VNFs are properly running. Let S(π) ⊆ V denote the set of nodes hosting a VNF for the given
path π. Then, the availability of path π is given by

a(π) =
∏

v∈S(π)
Av.



Usually, a single path is not enough for ensuring the SFC’s required availability. In this case,
a set of paths Pk is assigned to the SFC k. In order to make the routing paths independent,
we say that two distinct paths π1 and π2 in Pk cannot use the same node for hosting a VNF.
In other words, S(π1) and S(π2) must be disjoint. With this in mind, the SFC availability can
now be defined as the probability that at least one of its assigned paths is available, that is,

a(Pk) = 1 −
∏

π∈Pk

(
1 − a(π)

)
.

A set of paths Pk is then said to secure SFC k ∈ K if and only if a(Pk) ≥ Ak. A feasible
solution to the ASFCR problem consists of (i) a VNF placement on nodes, and (ii) for each
SFC, the associated set of paths passing through the requested VNFs in the right order that
secures the SFC. Additionally, node capacities, path latency and arc bandwidth volumes must
be verified. The goal is to find a feasible solution that minimizes the VNF placement cost.

3 Problem formulation and contributions
A natural compact nonlinear formulation for the ASFCR problem can be easily obtained. Due
to the page limit, we provide here only the availability constraints that are responsible for
rendering the formulation nonlinear. They are stated as follows:

ak
p ≤ zk

p ∀p ∈ P, k ∈ K (1)

ak
p ≤

∏
v∈V

A
yk

vp
v ∀p ∈ P, k ∈ K, (2)

∏
p∈P

(1 − ak
p) ≤ 1 − Ak, ∀k ∈ K, (3)

ak
p ≥ 0 ∀p ∈ P, k ∈ K, (4)

yk
vp, zk

p ∈ {0, 1} ∀v ∈ V, p ∈ P, k ∈ K, (5)

where yk
vp is a binary variable stating whether or not a VNF is hosted on node v ∈ V within the

p-th path assigned to SFC k ∈ K, zk
p is a binary variable stating whether or not the p-th path

is used for routing SFC k ∈ K, and ak
p is a real variable denoting the end-to-end availability

of the p-th path is used for routing SFC k ∈ K.
The presence of the nonlinear inequalities (2) and (3) makes the formulation difficult to be

solved by standard commercial MIP solvers such as CPLEX or Gurobi. In this presentation,
we show that without introducing any new variable, one can get rid of the nonlinear constraints
by considering an exponential number of linear constraints.

Unfortunately, the resulting MIP remains extremely hard to solve exactly. Inspired by the
works from [2], we also explore ways of approximating the problem’s feasible region with a
polynomial number of constraints. This is done by considering a logarithmic reformulation
of the original nonlinear program, which results in a new compact nonlinear program where
the only nonlinear components are logarithmic functions. We can then apply piecewise lin-
ear approximations to these logarithmic functions to obtain a linear reformulation. Different
strategies are investigated to build such piecewise linear functions, including a preprocessing
step that uses the shortest path algorithm to minimize approximation errors [1]. An exact
framework is finally proposed, exploring the exact and approximated reformulations together.
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