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1 Introduction
This study is dedicated to investigating the Maximum Weight Star Forest Problem (MWSFP).

Given an undirected graph G = (V, E) with a weight vector c ∈ R|E|
+ associated with its edges,

a star in G is defined as either an isolated node or a subgraph where all edges converge at a
common point known as the center. A star forest refers to a collection of disjoint stars within
G. The weight of a star forest is the aggregate sum of the weights of its edges. The objective
of the MWSFP is to identify a star forest in G with the maximum possible weight. This pro-
blem finds applications in diverse fields such as computational biology [5] and the automobile
industry [2]. Notably, the MWSFP is known to be NP-hard [5], as it can be reduced to the
minimum dominating set problem.

Within the existing literature, a limited number of scholarly works have delved into exami-
ning the polyhedron associated with the MWSFP. To the best of our knowledge, the compre-
hensive description of the star forest polytope on a tree or a cycle has been exclusively addressed
by Aider et al. in their work [1]. Furthermore, Nguyen [4] has introduced a linear-time algo-
rithm for solving the MWSFP in the context of cactus graphs, which represent a generalization
of trees and cycles. This instills confidence that a complete description of the MWSFP polyhe-
dron is within reach. As such, the primary goal of this work is to provide a detailed description
of the MWSFP polyhedron, highlighting the cactus graph’s unique features.

2 Star forest polytope for cactus graphs
A graph G is a cactus if each edge belongs to at most one cycle. Let SFP (G) be the polytope

of the MWSFP on G. Our strategy to fully characterize SFP (G) draws inspiration from the
polytope of the uncapacitated facility location problem (UFLP). This problem entails locating
a subset of facilities to minimize the sum of facility opening costs and the costs associated with
serving client demands. Consider a directed version −→

G = (V, A) of G = (V, E), where each
edge uv ∈ E corresponds to two directed arcs (u, v) and (v, u) in A, with arc costs given by
c(u, v) = c(v, u) = cuv. Define a center as a potential facility location, an adjacent node as
a client, and an arc (u, v) as an assignment from client u to facility v. A feasible solution of
the MWSFP on G precisely aligns with a feasible solution of the UFLP on −→

G . Therefore, the
projection of UFLP (−→G) onto the variables xuv, where xuv represents the occurrence of edge
uv in the maximum spanning star forest, precisely forms SFP (G).

We define the variable −→x (u, v) = 1 if there (u, v) is an assignment of a feasible solution
of the UFLP and −→x (u, v) = 0 otherwise. The variable y(u) indicates the presence of facility
u in the UFLP solution. Utilizing these variables, the polytope for UFLP (−→G), as showed by
Baiou et al. [3], incorporates bidirected cycle inequalities, lifted g-odd cycle inequalities, and
assignment inequalities. Our next step is to project these constraints onto the variables xuv.
2.1 Projection of bidirected cycle inequalities

The bidirected cycle inequality [3] has the following form : x(A(−→C )) ≤ ⌊2|V (−→C )|
3 ⌋, where −→

C

is a bidirected cycle [3] in −→
G and A(−→C ) is the set of all arcs in −→

C . Let C be the cycle in



G corresponding to a bidirected cycle −→
C in −→

G . We observe that x(A(−→C )) = x(E(C)) and
|V (−→C )| = |V (C)|. Thus, we obtain the projection of the bidirected cycle inequalities into the
variables xuv, which is cycle inequalities.
2.2 Projection of the assignment inequalities

The assignment inequalities have the following forms :

y(u) +
∑

(u,v)∈A

−→x (u, v) ≤ 1, ∀u ∈ V,

−→x (u, v) ≤ y(v), ∀(u, v) ∈ A.

We use the Fourier-Motzkin technique to eliminate the variables y(u) results in the derived
inequality xuv +

∑
(u,w)∈A,w ̸=v

−→x (u, w) ≤ 1, ∀u ∈ V, uv ∈ E. To project these constraints on the
variables xuv, we employ a technique called correct and non-redundant collection. The results
are inequalities defined on cactus subgraphs, where every non-pendant node is connected to
precisely one pendant node unless it forms a triangle or is part of a cycle of length four. These
subgraphs are termed MV -cactus graphs. Then, the projection of the assignment inequalities
is called MV -cactus inequalities, given by x(τMV ) ≤ |MV |. Here τMV is a MV -cactus, and
MV is a bipartite subgraph (U, S) of τMV such that nodes in part U have a maximum degree
of two and part S is connected in τMV .
2.3 Projection of lifted g-odd cycle inequalities

According Baiou et al.[3], the g-odd cycle inequality takes the form below :∑
(u,v)∈A(C)

−→x (u, v) +
∑

(u,v)∈A′(C)
−→x (u, v) −

∑
u∈Ĉ y(u) ≤ |Ĉ|+|C̃|−1

2 ,

where C is a g-odd cycle in −→
G associated with three node partitions {Ĉ, Ċ, C̃} [3], A(C) is the

set of all arcs in C and A′(C) is a lifting set [3] of C. In a similar manner, we utilize the Fourier-
Motzkin technique to eliminate the variables y(u). Afterwards, we identify the characterization
of collections of inequalities that are both correct and non-redundant. Our findings reveal that
such collections must solely contain a g-odd cycle inequality and assignment inequalities. Then,
the resulting projection of the lifted g-odd cycle inequalities is MV-partition inequalities, which
are of the following format :

x(E(C) \ P (C)) + 2x(P (C)) + x(τMV C) ≤ |P (C)| + |C|+|Ĉ|−1
2 + |MV C|,

where τMV C is a set of MV -cacti associated with g-odd cycle C, MV C is a set of bipartite
graphs associated with τMV C and P (C) is a subset of E(C) associated with {Ĉ, C̃}.

As a result, we have arrived at the main theorem of this report.

Theorem 1. Let G be a cactus graph, then the system of the cycle inequalities, the MV -cactus
inequalities, and the MV -partition inequalities completely describe SFP (G).
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