Deep learning for pump scheduling
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1 The pump scheduling problem

In a water distribution network, the pump scheduling problem is to plan the pumping opera-
tions within a discretized horizon 7 = {0,1,...,7 — 1} to minimize the electricity cost while
meeting the forecast consumption at each demand node and satisfying physical constraints.
This optimization problem includes integral decisions (pump on/off status) and nonconvex
constraints (pressure-flow nonlinear relations), so it can be modeled as a nonconvex mixed
integer nonlinear program (MINLP). At each time step ¢ € T, the pressure-flow equilibrium
through the network is governed by the demand at the service nodes and the levels/pressures
of the storage tanks. Then, the decision-making at one time step is propagated through wa-
ter level in the tanks to the other time steps. In light of these facts, the tank levels can be
seen as the bottleneck of the problem. Finding high-quality solutions to the pump scheduling
problem, or even any feasible solution, is extremely challenging. Some heuristic approaches
were introduced, mainly evolutionary metaheuristics. They usually rely on hydraulic simu-
lation to tackle the nonlinearities accurately, but relax and penalize storage capacity excess.
Alternatively, the other end is to take leverage from the MINLP formulation. Mathematical
programming approaches usually rely on MILP approximations or relaxations, and look for a
best compromise between accuracy and complexity.

In this study, we explore an alternative approach to efficiently handle the intricate dynamics
of this problem. As, in practice, pump scheduling is done on a daily basis, it is reasonable
to assume that for a given network, operators have access to a significant amount of pre-
solved instances, each characterized by demand and tariff profiles and a corresponding (sub-
Joptimal solution. This collection of data encourages us to devise a data-driven approach to
the pump scheduling problem. Recently, machine learning-based optimization algorithms have
absorbed lots of attention. Learning models can be employed to directly approximate the
optimal solution, an approach categorized as end-to-end learning [1]. For problems with hard
constraints, the approximated solution derived from the learning model violates the original
constraints of the problem, requiring a post-processing recovery phase to retrieve feasibility.
We propose a hybrid approach comprised of machine learning and a decomposition at the
post-processing stage to recover feasibility (see Demassey, Sessa, Tavakoli: Une méthode des
directions alternées pour le pilotage des systémes non-linéaires avec stockage (Roadef 2024)).

2 Deep learning with diversification and scaling

At the post-processing stage, we apply a variable splitting approach to decompose the prob-
lem, by iterating over two subproblems: initially fixing the tank levels and finding the best
configuration and at the second subproblem fixing the configuration and then recomputing the
levels of the tanks.



Contrarily to end-to-end learning and to match this post-processing algorithm, our deep
learning model predicts the (real-valued) tank level profiles instead of the binary scheduling
decisions. We first propose to develop a CNN-LSTM architecture, adept at capturing local
patterns and temporal dependencies from input data comprising tariff and demand profiles.
This model effectively maps these inputs to the corresponding outputs (the tank level profiles),
laying the foundation for our solution.

Building upon this, we introduce a second, physics-informed, model, by integrating a con-
tinuous surrogate model with the existing CNN-LSTM architecture. This advancement allows
for the approximation and incorporation of the integer and nonlinear constraints. It enhances
the ability of the data model to conform to physical realities.

Both models utilize Monte Carlo dropout [2] to diversifying the search space and conse-
quently increasing the chance to end up to a feasible solution at the post-processing stage.

Finally, a significant challenge in supervised learning framework is to get a data set to train
the model. If no history is available, then it requires getting a solution of the pump scheduling
problem for each data input. As the length of the horizon T increases, together with the model
accuracy, it becomes impossible to acquire optimal or even feasible solutions. To address this,
we develop a novel scaling method. Our learning model is first trained on a lower resolution,
and much easier, version of the problem (e.g., T' = 12). It is then applied to actual higher
resolution instances (e.g. with 7" = 24 or 48), simply by interpolating the 12-step predicted
solutions. Following this, our decomposition algorithm takes over, refining the interpolated
solution to retrieve a feasible solution for the high-resolution scheduling problem.

3 Preliminary results

We have generated instances from 6 years empirical data for the van Zyl (VZ) water network.
To find the (sub-)optimal solution of each instance with 7' = 12, a branch-and-check algorithm
is run with a preprocessing suggested in [3]. For higher resolution instances (7' = 24 or 48) the
tree search can be too time-consuming. 50 instances were selected as the test benchmark each
deviates from the other in demand and tariff profile. The performance of the hybrid algorithm
(HA) (CNN-LSTM+decomposition) with different penalty parameters (p € {2,50}) in the
decomposition algorithm is compared with branch-and-check with and without preprocessing
(BCpre and BC), in finding a first feasible solution.
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FIG. 1: CPU time to a first feasible solution over 50 test instances for T' = 24 and T = 48
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