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1 Introduction

We consider here Markovian Decision Processes (MDPs) with a total knowledge of the mo-
del i.e. known transitions and rewards functions. There are primarily two effective methods for
exactly solving a MDP using model-based approaches : dynamic programming or linear pro-
gramming, as discussed in [11]. The determination of the most efficient method for solving an
MDP problem has been a subject of investigation in the literature ; for a comprehensive review,
refer to [1] as well as [11, 9]. On one hand, according to [11], it has been argued that value-based
algorithms, such as Value Iteration (VI) and its variants, are not as practical as policy-based
approaches and are thus recommended to be avoided. On the other hand, the comparison bet-
ween Policy Iteration (PI) and Policy Iteration Modified (PIM) for policy-based approaches
remains unclear, although the latter appears to be more efficient [11]. Earlier findings indicated
that the linear programming approach was not suitable for solving such problems, primarily
due to the slow speed of the solvers [9]. Despite this, there have been limited comparative
studies in the literature, and as of 2007, the question remained unresolved [10].

With the increasing performance of Linear Programming solvers, such as Gurobi or CPLEX,
and advancements in parallelization possibilities, the periodic reevaluation of solving methods
becomes pertinent. Consequently, in the study by [1], a comparative analysis of the performance
of linear programming and policy iteration was conducted on specific Markov Decision Process
(MDP) models, focusing on the expected total reward criteria.

The considered MDPs are characterized by a large state space (with a cardinality of at least
2000) and exhibit a variety of action choices (ranging from 2 to 500). Notably, all transition
matrices are highly sparse, containing only 1% and 0.1% of non-zero entries.

Previous studies employs interior point methods to solve the Linear Program. They re-
veal that Linear Programming (LP) outperforms Policy Iteration (PI) and significantly so for
particular models. It is essential to note, however, that the class of models examined by [1] is
prevalent in the literature, particularly in network problems where the number of possible tran-
sitions in a given state is limited. Nonetheless, the study possesses certain limitations. Firstly,
it does not consider policy iteration modified and its variants, even though these approaches
may outpace standard PI in terms of speed. Secondly, the LP solving method employed in the
study only provides the policy and not both policy and values, as dynamic programming does.
Lastly, the generalizability of their conclusions to broader cases with less sparsity or other op-
timization criteria remains uncertain. The aim of this work is to find out if linear programming
is still an effective tool in more general cases, and also to find under which conditions (state
space and action space dimension, sparsity) it is still efficient to use dynamic programming.



2 Comparison framework
Solvers For this comparison we only consider numerical solvers to avoid any bias due to
programming. Those solvers should also be easily accessible to a modeller. The choice of pro-
gramming language will therefore be Python. For linear programming, we use gurobipy [4]
which is one of the most efficient solver whose core is written in C. For stochastic dynamic
programming, we consider MDPtoolbox [2] which is fully written in python but uses the numpy
library which is optimized and written in C. We also consider marmoteMDP [7] whose code is
written in C++ and then encapsulated in python.

Benchmark We divide the testing models in three different classes : random models, well
known toy models and real models. Random models are built using randomly generated tran-
sition with fixed sparsity within 0.1, 0.4, 0.7 and 1.. The reward matrix is also randomly
generated with a density of 1. Among well-known models, we provide frozenLake model [3], the
car replacement model [6] or four rooms [5]. Considering real models, we implemented Queue
with Impatience [8] and Tandem Queue [12].

3 Results
We calculate the average runtime of each solver over 10 experiments. VI is consistently 7

times slower than policy-oriented methods. Modified policy iteration is slower than PI in 40%
of cases. Contrary to [1], the LP dual isn’t always preferable, especially with fewer actions
than states. LP outperforms marmoteMDP once and MDPToolbox 10 times, but is at most 30
times slower than dynamic programming. LP excels in small dimensions with Gurobi efficiency.
Future work involves expanding the model range for refining these preliminary findings.
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