
Goodput optimization with a variable number of processors

Joachim Cendrier, Anne Benoit, Frédéric Vivien
LIP, ENS Lyon, CNRS, Inria

{joachim.cendrier, anne.benoit, frederic.vivien}@ens-lyon.fr

Keywords : scheduling, variable capacity resources, goodput, dynamic programming.

Introduction. Because of the growing concern about their energy consumption and
impact on the environment, more and more data centers aim at using renewable energies in
order to improve their sustainability [2]. From the user point of view, this amounts at seeing
the capacity of the HPC platform on which the application is executed evolve over time. For
instance, the power supply may be reduced when using coal instead of wind or solar energy.
This problem is termed the variable capacity scheduling problem [3], and some preliminary
solutions have already been proposed [1].

In this work, we go beyond previous approaches by allowing jobs to be checkpointed before
a resource change, hence avoiding loosing some work. We assume that the resource provider
warns the user before a change in the number of processors, hence it is possible to anticipate
and take checkpoints before the change happens. However, we do not know the exact number
of processors after the change. The goal is then to optimize the goodput within the next period
(time between two changes in the number of processors). We first detail the model, then we
propose some preliminary solutions and conclude.

1 Model
We consider J infinite jobs ji, with 1 ≤ i ≤ J . Job ji has to be executed on pi processors,
and it can be checkpointed within a time Ci. The time of recovery for this job is Ri, that
corresponds to the time to read the checkpoint to be able to resume the execution of the job.

The jobs are to be executed on a platform with a varying number of processors: the number
of available processors regularly changes, at time T0, T1, . . . , Tn, In a regular pattern, the
duration between two changes is constant (T = Tn+1 − Tn for all value of n). Hence, Pn is the
number of processors available from time Tn to time Tn+1. At each change in the number of
processors, we may gain or loose up to k processors, i.e., |Pn+1 − Pn| ≤ k.

The goal is to optimize the use of the processors according to various objective functions,
adapting to each change in the number of processors over time. No work will be wasted, since
we are always able to checkpoint a job before shutting it down, by anticipating checkpoints
because we know that at maximum k processors will disappear at time Tn. Hence, at least k
checkpoints are taken just before an expected decrease of the number of processors. Additional
checkpoints can be taken right after Tn, once the exact number of available processors Pn is
known, to start a new set of jobs that fills the available processors as good as possible, and
keep as few processors idle as possible.

We focus in this work on the optimization of the Goodput per period [Tn, Tn+1], which
depends on the time during which useful work has been completed by the running jobs. Within
the period, the total available time for work is Pn(Tn+1 − Tn), but some of this time may be
used by job checkpoints or recoveries, or when some processors remain idle. The goodput is
the ratio of useful work over this total amount of work:

Goodput([Tn, Tn+1]) =

J∑
i=1

piW
i
n

Pn(Tn+1 − Tn) ,

where W i
n is the duration during which useful work is performed by job ji within the period.

Figure 1 presents an example, where the useful work is represented by the blue zones.

j4

j3

j2

j1
C2

C1

j4

C3
R5 j5 C5

j4

j5

R1

R2
j1

j2

timeTn Tn+1

processors

0

5

10

15

20

FIG. 1: In this example, we have five jobs taking 3, 3, 5, 8 and 8 processors respectively, and we have
a total of 19 processors running at first, then 16, then 22. In blue, we have the useful work phases,
in red the checkpoint phases, and in green the recovery phases. Finally, in grey, the processors are
switched on but not working, as other processors must be available to work on a larger job.

2 Algorithms
In order to anticipate from loosing processors, the first natural solution consists in checkpoint-
ing all jobs before Tn, and then decide which jobs to run at time Tn. The goal is to have as
many jobs running as possible, hence we use a subset sum algorithm on the pi’s to fit the total
number of available processors Pn. With negligible checkpoint and recovery times (Ci = Ri = 0
for 1 ≤ i ≤ J), this is optimal.

We also propose a sophisticated dynamic programming algorithm that accounts for check-
pointing and recovery times, and computes a solution with optimal goodput on the period.
Given a set of checkpointed jobs just before Tn, covering at least k processors, there are three
categories of jobs before Tn: the jobs checkpointed, the jobs running but not checkpointed, and
the jobs not running. The dynamic programming iteratively decides whether job ji (1 ≤ i ≤ J)
should be executed or not at time Tn, depending of its previous state. It might need to be
checkpointed after Tn to be switched off (see j3 in the example), or may require some recovery,
either at time Tn or after some checkpoints have been taken on other processors (see j5).

With constant checkpointing times (Ci = C for 1 ≤ i ≤ J), we formally prove that all
additional checkpoints should be taken at time Tn, and the algorithm checks all cases to obtain
an optimal solution within a time O(J × Pn

3). The algorithm also works with different Ci’s: if
JCn is the set of jobs checkpointed after Tn, all of these checkpoints are aligned so that they
end at time Tn + maxi∈JCn Ci, hence some work can be performed before the checkpoint to
contribute to the goodput. This leads to a complexity of O(J2 × Pn

3).

3 Conclusion
This preliminary work provides solutions that optimize the goodput within a period. However,
it might not be fair for some jobs that may never be executed. A first natural extension is to
account for the yield of jobs, which is the ratio of its actual progress rate over the progress
rate that would have been achieved if the job was executing alone on the platform. The goal
is hence to maximize the minimum yield so that all jobs are treated fairly. We also plan to
combine both objectives in a bi-criteria approach.

References
[1] L. Perotin, C. Zhang, R. Wijayawardana, A. Benoit, Y. Robert, and A. Chien. Risk-aware scheduling

algorithms for variable capacity resources. In Proc. of SC ’23 Workshops (PMBS), page 1306–1315, 2023.

[2] A. Radovanovic. Our data centers now work harder when the sun shines and
wind blows, Apr 2020. https://blog.google/inside-google/infrastructure/
data-centers-work-harder-sun-shines-wind-blows.

[3] C. Zhang and A. A. Chien. Scheduling challenges for variable capacity resources. In Job Scheduling
Strategies for Parallel Processing, pages 190–209. Springer, 2021.

