
Reinforcement Learning for Cut Generation in Branch-and-Cut

Thi Quynh Trang Vo1, Viet Hung Nguyen1, Mourad Baiou1, Paul Weng2

1 LIMOS Université Clermont Auvergne, France
{thi_quynh_trang.vo,viet_hung.nguyen,mourad.baiou}@uca.fr

2 UM-SJTU Joint Institute, Shanghai Jiao Tong University
paul.weng@sjtu.edu.cn

Keywords : Reinforcement Learning, Combinatorial Optimization, Branch-and-Cut, Cut
Generation Strategy

1 Introduction

Branch-and-Cut (B&C) is a popular method for exactly solving integer programming (IP)
problems. B&C is the combination of two methods: branch-and-bound and cutting-plane.
While branch-and-bound divides the problem into subproblems by a divide-and-conquer strat-
egy, the cutting-plane method tightens these subproblems by adding valid inequalities. B&C
contains a sequence of decision problems such as variable selection, node selection, and cut
generation. Consequently, its performance heavily depends on decision-making strategies.

A core B&C component is the cutting plane method, which strengthens the linear program-
ming (LP) relaxations of the IP problem by introducing additional valid inequalities, termed
“cuts”. Adding cuts can substantially remove infeasible regions and boost efficiency. In general,
cuts are categorized into general-purpose cuts obtained by the variable’s integrality conditions
and combinatorial cuts arising from the underlying combinatorial structure of the problem.

However, generating cuts in B&C is a delicate process due to the challenge of balancing
the computational cost of the separation procedure against the benefits of cuts produced.
Generating cuts in a naive way can reduce the branch-and-bound tree’s size but potentially
increase the overall computing time due to the time spent executing the separation routine
and solving the LP relaxations in the enumeration tree. Thus, learning a deft policy for cut
generation is crucial.

In our previous work [1], we proposed a Machine Learning framework to enhance the gen-
eration of subtour elimination constraints for the Traveling Salesman Problem (TSP). In this
paper, we extend this framework to the Max-Cut problem.

2 Cut generation problem

Consider a combinatorial optimization problem P defined on a graph G = (V, E) and a class of
combinatorial cuts C associated with P . A cut generation strategy π(P,C) for cut type C in B&C
for P decides whether to generate C-type cuts or to branch at each node of the enumeration
tree. The cut generation problem is to learn a cut generation strategy π(P,C) that obtains the
best average performance τ on a given set of problem instances IP , i.e.,

π(P,C) ∈ arg min
π∈Π

Ep∈IP [τ(p, π)]

where τ(p, π) is the B&C’s running time for solving instance p with cut generation policy π.



3 Methodology
To learn cut generation policies, we also formulate the cut generation problem as a Markov
Decision Problem (MDP) and then use reinforcement learning to train the agent as in [1].
However, instead of defining the reward function based on the IP relative gap [1], which requires
extensive effort to tune hyperparameters, we introduce a new reward function based on the
running time. This reward function directly drives our ultimate goal, which is to accelerate
the B&C’s performance. However, this time-based reward function causes difficulties for the
agent to learn due to the long-term benefits of generating cuts, which can only be observed at
trajectory endpoints.

To tackle this issue, we simplify the MDP of cut generation as follows. Starting from the
root node, the agent iteratively chooses between cut generation and branching, aiming to reach
a leaf node. The reward for reaching a leaf node is the negative of the relative IP gap at that
node. Each action incurs a cost equal to its runtime. The final reward is the leaf node reward
subtracted by the total running time of all performed actions. The agent’s objective is to
discover a cut-generation policy that maximizes this final reward.

With this simplified version, we represent a state by only two components: an optimal
solution to the LP relaxation at the considered node and features of the current node. Then,
we model the cut evaluator as the Q-value function of the MDP and parameterize it as a neural
network with two parts: one embedding states into feature vectors and one approximating
action Q-values. To train the cut evaluator, we use the DQN algorithm, i.e., the parameters
of the cut evaluator are updated to minimize an L2 loss defined with a target network using
data sampled from a replay buffer filled with transitions generated during online interactions
with the environment.

4 Numerical results
To evaluate the effectiveness of our proposed method, we use this framework to learn gener-
ation strategies of cycle inequalities for the Max-Cut problem. We train the model on small
random instances and then test it on larger instances. Table 1 shows that our framework can
significantly accelerate the B&C’s performance on all instance groups.

Strategy Solved CPU Time Nodes Cuts

SMALL Without RL 100/100 275.4 297.4 14403.4
With RL 100/100 60.7 449.1 4443.8

MEDIUM Without RL 47/100 2777.8 1666.9 38111.5
With RL 87/100 1310.2 3557.8 30723.8

LARGE Without RL 0/100 3600.1 3806.2 56115.7
With RL 2/100 3559.2 4202.8 59108.2

TAB. 1: The numerical results of the cycle inequality generation strategies

References
[1] T. Q. T. Vo, M. Baiou, V. H. Nguyen, and P. Weng. Improving subtour elimination

constraint generation in branch-and-cut algorithms for the tsp with machine learning. In
M. Sellmann and K. Tierney, editors, Learning and Intelligent Optimization, pages 537–551,
Cham, 2023. Springer International Publishing.


