
Using decision hypergraphs to design a storage cabinet of
limited size

Luis Marques1, François Clautiaux1, Aurélien Froger1

Univ. Bordeaux, CNRS, Inria, IMB, UMR 5251, F-33400 Talence, France
luis.lopes-marques@u-bordeaux.fr

Mots-clés : Cutting and Packing, Integer linear programming, Temporal knapsack, Arc flow
models, Decision hypergraphs

We study the problem of designing a cabinet consisting of a set of shelves containing com-
partments whose contents slide forward on opening. Given a set of items candidate to be
stored in the cabinet over a given time horizon, the problem is to design a set of shelves, a set
of compartments in each shelf and to select the items to be placed in the compartments. The
objective is to maximize the profit of the items selected in the device. Our problem is inspired
by a real-world application involving inner-city pharmacies that use an automated under-
the-counter storage and retrieval cabinet for the most common medications. We address a
simplified version of such problems as a first step toward optimizing such capacity-constrained
systems.

From a combinatorial optimization point of view, we study a two-phase and three-dimensional
variant of the temporal knapsack problem, which we refer to as the Storage Cabinet Physical
Design (SCPD) problem. In the first phase, called the design phase, a three-dimensional sto-
rage cabinet or cabinet for the rest of this paper, is divided horizontally into shelves, which are
in turn divided vertically into compartments. The second phase, called the assignment phase,
corresponds to the selection of the items, and in this case, their assignment to compartments.
When an item is assigned to a compartment, it is by definition present during a given interval,
which defines our temporal constraints.

We give a dynamic program for a relaxation of the SCPD problem where each item can be
selected in more than one compartment. The states and transitions of this dynamic program
define a decision hypergraph, a generalization of decision graphs. In Martin et al. (1990), a
hyperarc is a triple (F , v, p), where F is a multiset of vertices called the tail of the hyperarc,
v is a vertex called the head of the hyperarc, and p is a profit. In a hypergraph representation
of a dynamic program, the vertices are the states of the dynamic program and the hyperarcs
symbolize the decisions. Specifically, each hyperarc (F , v, p) represents the transition from the
states at its tail to the state at its head. From the decision hypergraph of this relaxation of
the SCPD problem, we derive an arc flow formulation equivalent to reformulating the SCPD
problem as a maximum cost flow problem with additional linear constraints. Let G = (V , A)
be the decision hypergraph associated with the relaxation of the SCPD problem, with v+

(resp. v−) denoting its source (resp. sink). For each vertex v ∈ V , let A+ (resp. A−) be the set
of hyperarcs of which v is the head (resp. of which v belongs to the tail). For each hyperarc
a ∈ A, let pa be its profit and let xa ∈ {0, 1} be its associated decision variable. The arc flow
formulation is defined as follows, where I is the set of items and A(i) is the set of hyperarcs1



carrying the decision of assigning item i.

maximize
∑
a∈A

paxa (1a)

subject to
∑

a∈A−(v)
xa −

∑
a∈A+(v)

xa = 0 v ∈ V \ {v+, v−} (1b)

∑
a∈A−(v−)

xa = 1 (1c)

∑
a∈A(i)

xa ≤ 1 i ∈ I (1d)

xa ∈ N a ∈ A (1e)

Constraints (1a)-(1c) and (1e) define our maximum cost flow problem, and constraints (1d)
define the additional linear constraints we add to ensure the feasible of the solution for the
SCPD problem.

We show that the size of this arc flow formulation is a bottleneck when solving it directly
with a MILP solver. Several techniques have been used in the literature to address this issue.
Brandão and Pedroso (2016) proposed so-called graph compression techniques, which exploit
the structure of the problem to reduce the number of arcs and vertices in the network. By stu-
dying the structure of the SCPD problem, we propose dominance rules to reduce the size of the
hypergraph by (i) partially enforcing an order on the guillotine cuts and bounding the number
of times a decision appears in a solution, (ii) merging states that are equivalent, and (iii) de-
tecting and exploiting states that represent easily solvable subproblems. We also introduce a
simple family of valid inequalities to improve the linear relaxation of the formulation.

To evaluate the performance of our formulations, we first randomly generate 180 instances by
adapting a method from (Caprara et al., 2016). We first evaluate the impact of our dominance
rules and valid inequalities on the performance of the arc flow formulation and show that
adding them all gives the best reduction in the size of the decision hypergraph and the best
increase in the number of instances solved. This configuration gives a reduction of about 61%
and the solver solves 35 more instances than the arc flow formulation without the dominance
rules and the valid inequalities. We then focus on the comparison between a simple and
compact MILP formulation and the arc flow formulation with all dominance rules and valid
inequalities. We confirm that the size of the arc flow formulation far exceeds the size of the
compact MILP formulation, and we confirm the correlation between this increase in size and
the increase in the quality of the linear relaxation. By counting the number of times the
solver returned the best known primal bounds, the number of best known dual bounds, the
number of instances solved and the optimality gap at the time limit, we see that the arc
flow formulation outperforms the compact MILP formulation. In terms of best known primal
bounds, the two formulations do not differ significantly, with the solver of the compact MILP
formulation returning 151 times the best known primal bound against 137 for the solver of
the arc flow formulation. However, the solver of the compact MILP formulation returned the
best known dual bound only 81 times against 171 for the solver of the arc flow formulation. In
addition, the solver of the arc flow formulation solved 25 more instances than the solver of the
compact MILP formulation, with a total of 84 instances solved out of 180. We also observe a
reduction in the optimality gap at the time limit, with 6.32% for the solver of the compact
formulation and 4.38% for the solver of the arc flow formulation.

Références
Brandão, F. and Pedroso, J. P. (2016). Bin packing and related problems : General arc-flow formulation with

graph compression. Computers & Operations Research, 69 :56–67.

Caprara, A., Furini, F., Malaguti, E., and Traversi, E. (2016). Solving the temporal knapsack problem via
recursive dantzig-wolfe reformulation. Information Processing Letters, 116(5) :379 – 386.

Martin, R. K., Rardin, R. L., and Campbell, B. A. (1990). Polyhedral Characterization of Discrete Dynamic
Programming. Operations Research, 38(1) :127–138.


