Optimal swarm control in a threatening environment

Stanislas de Charentenay'?, Alexandre Reiffers-Masson!, Gilles Coppin!,
Guillaume Lesueur?, Jean-Yves Schneider?

L TIMT Atlantique, LAB-STICC laboratory, Brest, France
stanislas.mareschal-de-charentenay@imt-atlantique.fr
2 Thales Optronique SAS, Elancourt, France

Mots-clés : UCAV swarm, Optimal control, Markov decision process, Path planning.

1 Introduction

Robot swarms have gained a lot of popularity in recent years, especially on the topic of
optimal trajectory control. Here, we focus on swarms of unmanned combat aerial vehicles
(UCAV) that evolve in a hostile environment. In this case, the swarm members have a high
risk of being destroyed during their mission. We want to find a control that avoids the complete
destruction of the swarm with the highest probability and allow at least one member of the
swarm to reach a target safely. Although the risk of destruction of a swarm member depends
strongly on its position in the environment, we know that the presence of other members affect
this destruction probability by acting as shield or distracting the attacker for example. In the
state of the art, although path planning in dangerous environments has been widely studied for
a single UAV and swarms, the swarm effect is often neglected and the swarm is only exploited
for target allocation purposes.

In this paper, we aim to exploit this swarm effect to find a control that minimizes the
probability for the whole swarm to be destroyed before reaching a target zone. For this we
designed two metrics to evaluate a given control and achieved an simple optimization algorithm
in the case of a predetermined control for a path planning problem.

2 Model description

We control a swarm of n UCAVs in a 3 dimensional space and aim to reach a target zone
Z C R3. The members of the swarm risk destruction throughout their mission. The studied
scenario is modeled by a discrete time Markov decision process.

In our model, each member of the swarm has a position and speed state both in R® and a
destruction state in {0,1}. We add an additional reaching state in {0, 1} for the whole swarm
that keeps track of whether a member the swarm already reached the target. We concatenate
all these states to an overall swarm state S(¢) at time ¢. The actions taken by the swarm
correspond to a bounded acceleration in R? for each member.

Regarding the evolution of the states, The position and speed state are deterministic, as the
position and speed are the discrete derivative of the speed and acceleration respectively. For the
evolution of the destruction state, we know that it will stay we assume that we know individual
destruction rate functions that represent the probability for one member of the swarm to be
destroyed. This probability is dependent on the position of the studied drone, but also on the
positions and destruction state of other members to take the swarm effect into account. From
these functions, we can get the probabilities ¢(d | s) of destruction state d when in overall
state s. The next reaching state of the swarm can be determined from the next destruction
and position state, by checking if any members of the swarm are undetected and inside the
target zone.



3 Control evaluation

The control of the swarm is modeled by a policy 7. To evaluate the policies, we design a
reward system based on a cost function that associate to swarm state s the cost ¢(s) = —1 if
the reaching state is 0 and c(s) = 0 else. As such we can evaluate the policy with the value

function V;(s) = E, { S0 7te(S(#)) | S(0) = s} , with =y the discount factor. The value function

can be interpreted as the average discounted time left before reaching the target zone safely,
and can be calculated using Bellman equations.

As the state space has a very large number of dimensions, finding an optimal closed loop
control will be very hard as the computation cost of classical optimization algorithms will be
too high. Instead, it is easier to look at a path planning problem with an open loop control. In
this case, the policy is deterministic which implies that the position and speed of the swarm so
we can deduce s(d, t) the overall swarm state at time ¢ knowing that we are in detection state
d and reaching state 0. As such we get the recursive expression based on Bellman equation :

Ve X(1)=—-1+ > qld|s(dt)V(d t+1)
d’e{0,1}"

The metric used to evaluate policy m would be Vi (sg) with sq the initial state of the swarm.
The calculation complexity of this metric is O(7T™) with T the number of time steps in the
scenario.

By calculating the instants ¢; where the planned trajectory of UCAV ¢ enters the target
zone, we can get a different expression of the metric by calculating the probability to be in
different states at each ¢f. This expression can be calculated in O(72"n!), which is faster for
smaller swarms.

Furthermore, using a slightly different cost function, we can calculate the probability to
avoid complete destruction of the swarm with similar expressions. This probability makes for
a useful additional metric.

4 Path planning optimization

To optimize our path planning control, we used a gradient descent algorithm to maximize
the value of our different metrics. We experimented our implementation on a scenarios where
the members can act as a shield for others, meaning that the destruction rate is lower when a
member is close to its neighbors. Although the resulting trajectories were satisfying for a swarm
of 2 or 3 UCAVSs, we are still struggling to optimize trajectories for larger swarms. Future work
has to be done on clever approximations to reduce the dimension of our state space, such as
discretization or aggregation techniques.
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