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1 Introduction
Markov Decision Process is a framework to solve stochastic dynamic control problem in which

the environments evolve under the actions of an agent and in which actions could optimize
an expected gain [10]. The goal is therefore to find the optimal sequence of actions (named
policy) that gives the maximal return. A various categories of problems can be modeled in
this way as [3] achieves a recent overview. One can quote inventory control, energy control,
networks of queues and stochastic shortest past in robot exploration. There is a great interest in
solving these problems exactly as it is sometimes necessary to ensure optimal decision-making
in uncertain environments. The solution to this problem can be either an optimal policy or a
value function that assigns each state a visit priority [13].

The widely acknowledged curse of dimensionality in the MDP framework hinders its sca-
lability in practical problems due to an excessively large state space, leading to inefficient
computational outcomes. Various strategies aim to address this challenge by decomposing an
MDP into a more manageable form. Notably, Factored MDPs [7] represent the state as a fea-
ture vector and Reduced-Rank MDPs [11] uses scalar product transition function. Additionally,
Hierarchical solutions [8] provides options as actions that lasts in time or aggregation of state
space into regions [14, 9]. This study focuses on state aggregation, aiming to determine opti-
mal state groupings and evaluate the aggregation quality. The selection of merging criteria is
pivotal, with prior works proposing diverse approaches. Bisimulation [5], soft aggregation with
probabilistic state inclusion [12], limited number of regions [6] or various aggregation critera
[1] are implemented which induces approximation bound on the optimal policy [15, 1]. The
aggregation process can enhance solving algorithms like Policy Iteration [2, 4].

2 Our Contribution
We propose a new class of algorithms based on dynamic programming methods. Our method

has two main advantages : it saves computation time by updating the value of several states
at once, these states being grouped together under a certain similarity criterion.

More precisely, we first gather all the states in the same region. We then divide this region
into several pieces, then each of these regions into several pieces, and so on. To divide a region
into several pieces, we separate the states that evolve differently under the action of the Bellman
operator, which updates the value function. Between two divisions, we update the value of each



region with a projected Bellman operator, which is less costly to calculate. It is therefore a
progressive disaggregation of states, starting from a single region. At the end of the process,
the states that have remained together evolve in the same way when the Bellman operator
is updated. These states have the same value and therefore the same role in the MDP. The
final value function obtained in this process can approximate the optimal value function to an
arbitrary ε precision, thus obtaining an optimal policy, guarantee based on the following result
we proved :
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where Ṽ is the value on region, V ∗ is the optimal value function, γ is the discount factor, T ∗

is the optimal Bellman operator, ΠT ∗ is the projected optimal Bellman operator and SpanS V
is defined as maxs∈S V (s) − mins∈S V (s).

In this study, we streamline the problem by transforming it into an abstract Markov Decision
Process (MDP) and precisely address this refined scenario. We present an algorithm designed
to yield an optimal policy for decision-making problems. By consolidating states, we effectively
diminish the intricacies associated with planning. Consequently, our numerical experiments
underscore substantial time efficiencies in resolving extensive problems.
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